

Modeling Guide

A guide to modeling for NIEM-UML with the Nomagic Cameo NIEM-UML plugin.

Portions Copyright © 2012 Data Access Technologies (Model Driven Solutions)

Portions Copyright © 2012 Georgia Tech Research Institute (GTRI)

Portions Copyright © 2012 Microsoft

June 2012 i

Table of Contents
1 Introduction .. 2

1.1 Intent of this document ... 2
1.2 NIEM-UML Background ... 2
1.3 OMG NIEM-UML and Cameo NIEM-UML ... 2
1.4 Intended Users of NIEM-UML ... 3
1.5 Understanding NIEM-UML and Model Driven Architecture (MDA) .. 3

1.5.1 The NIEM Platform ... 3
1.5.2 Intent of the PIM .. 4
1.5.3 Intent of the PSM ... 4
1.5.4 The NIEM PIM and the NIEM PSM ... 5
1.5.5 NIEM-UML Transformations .. 5
1.5.6 NIEM-UML Libraries.. 6

2 NIEM-UML Modeling Guide .. 7
2.1 Overview .. 7

2.1.1 Introduction.. 7
2.1.2 Platform Independent Perspective ... 8
2.1.3 Platform Specific Perspective .. 12
2.1.4 Model Packaging Perspective .. 16

2.2 Modeling Namespaces .. 17
2.2.1 Namespaces ... 17
2.2.2 NIEM Names ... 19

2.3 Modeling Complex Types .. 21
2.3.1 Complex Types .. 21
2.3.2 Object Types .. 23
2.3.3 Role Types ... 26
2.3.4 Association Types .. 29
2.3.5 Metadata Types .. 33
2.3.6 Augmentation Types .. 35
2.3.7 Adapter Types .. 39

2.4 Modeling Simple Types .. 41
2.4.1 Simple Types ... 41
2.4.2 Primitive Types .. 43
2.4.3 Code Types .. 46
2.4.4 Unions .. 49
2.4.5 Lists ... 51

2.5 Modeling Properties .. 53
2.5.1 Properties ... 53
2.5.2 Property Holders and Property References .. 57
2.5.3 Substitution Groups ... 61
2.5.4 Choice Groups ... 64

2.6 Packaging Models ... 65
2.6.1 Reference and Subset Models .. 65
2.6.2 Model Package Descriptions.. 68

Annex A NIEM-UML PIM Example ... 72
Annex B Terms and Definitions ... 91

2.7 Definitions .. 91
2.8 Acronyms .. 95

NIEM-UML Modeling Guide

June 2012 2

1 Introduction
1.1 Intent of this document
The modeling guide for Cameo NIEM-UML provides modelers, information architects and developers with the
information they need to develop, maintain and leverage UML for information sharing based on the National
Exchange Model (NIEM). Cameo NIEM-UML is based on the NIEM-UML standard (in final stages of adoption) of
the Object Management Group (OMG).

This guide is intended to support modeling for NIEM, it is not a tutorial on either NIEM or UML. Background
information can be found in the following resources:

• NIEM: https://www.niem.gov/about/tech/Pages/technical-overview.aspx

• NIEM-UML: http://www.niem-uml.org

• UML Training: http://www.nomagic.com/services/training.html

• UML Resources: http://www.uml.org/

• Magicdraw: http://www.magicdraw.com

1.2 NIEM-UML Background
Grown out of a grassroots initiative, the National Information Exchange Model (NIEM) was born as a best practice
developed by a handful of state and local practitioners and defined in NIEM’s predecessor, the Global Justice XML
Data Model (GJXDM). Today, NIEM is a national program that empowers organizations to create and maintain
meaningful data connections across their stove-piped IT systems, as well as their stakeholder base. NIEM provides
data components and processes needed to create exchange specifications which support mission data sharing and
exchange requirements. By providing a common vocabulary and mature framework to facilitate information
exchange, NIEM enables communities to “speak the same language” as they share, exchange, accept, and translate
information efficiently.

Traditionaly NIEM has been defined in terms of the eXtensible Markup Language (XML), XML Schema (XSD) and
the normative NIEM platform specifications which include the NIEM Naming and Design Rules (NDR) Version 1.3
and the NIEM Model Package Description (MPD) Specification Version 1.0. These platform specifications are
utilized without change in NIEM-UML and the NIEM-UML specification assists information architects and
developers in producing NIEM model packages conforming to these standards. More information on NIEM is
available at https://www.niem.gov/.

The use of UML to represent NIEM is part of the NIEM Program Management Office’s (PMO) strategy in support
of the NIEM community and intended to broaden NIEM adoption and in aligning to industry standards. NIEM-UML
embraces the Model Driven Architecture (MDA) ® standards of the Object Management Group (OMG) ® to
facilitate the separation of concerns between business needs and technology implementations. More information on
OMG is available at http://www.omg.org/mda/.

1.3 OMG NIEM-UML and Cameo NIEM-UML
NIEM-UML is a standard of the Object Management Group (OMG). Cameo NIEM-UML is a product of NoMagic,
Inc. provided in partnership with Model Driven Solutions. Cameo NIEM-UML is a “plugin” to the popular
“Magicdraw” UML tool provided by NoMagic. The combination of Cameo NIEM-UML and Magicdraw
implement the NIEM-UML specification with enhanced capabilities to better facilitate:

• Easy and intuitive modeling for NIEM-UML

• Understanding and reusing the NIEM refereice vocabularies

https://www.niem.gov/about/tech/Pages/technical-overview.aspx
http://www.niem-uml.org/
http://www.nomagic.com/services/training.html
http://www.uml.org/
http://www.magicdraw.com/
https://www.niem.gov/
http://www.omg.org/mda/

NIEM-UML Modeling Guide

June 2012 3

• Utilizing other aspects of UML to better capture business requirements and facilitate the full life-cycle of
development

• Integrationing NIEM with the rest of the system

• Supporting Service Oriented Archtiecture with Cameo SoaML

Information on Cameo NIEM-UML can be found here: http://www.nomagic.com/products/cameo-workbench.html

1.4 Intended Users of NIEM-UML
One of the key goals for NIEM-UML is to allow modelers and developers to apply NIEM-UML with minimal effort
in order to create new models or change existing models and ultimately to produce NIEM solutions. When modeling
information exchanges, there are two distinct sets of requirements that lead to two approaches to modeling. The first
set of requirements represents the business requirements of an organization. This set is relatively constant and
consistent over time and entails modeling the capabilities the organization has, the processes the organization
employs and the information the organization leverages. The second set is related to the technical implementation of
an organization’s capabilities, processes and information and varies as platforms and technologies change. These
approaches are defined by MDA as the Platform Independent Model (PIM) and the Platform Specific Model (PSM)
approaches, respectively. The “platform” for NIEM is considered to be XML Schema structured according to the
NIEM naming and design rules (NDR) for XML Schema.

The two distinct sets of requirements lead to two different approaches to modeling. The PIM is mainly a business
information modeling approach while the PSM is mainly a technical modeling approach. In practice, it is important
to be able to model an information exchange leveraging both the business and the technical modeling approaches.
Furthermore it is critical to have an active communication and effective collaboration between business and
technical modelers to assure that the model represents the business requirements correctly and implements them
effectively within the means of the current platform and technology. The structure of the NIEM-UML Profile is
designed to meet the requirements of the two modeling communities described above and to allow for
communication and collaboration between them. NIEM-UML also contains transforms that allow a PIM to
automatically produce a PSM (using standard Model Driven Architecture (MDA) tooling) while allowing the
modeler to augment the PIM with PSM considerations as required.

This guide is primarily focused on the use of the PIM to design and maintain NIEM exchange specifications.

1.5 Understanding NIEM-UML and Model Driven Architecture
(MDA)

1.5.1 The NIEM Platform
Inherent in the idea of a platform independent model (PIM) is that there is some kind of “platform”. What
constitutes the platform may, to some degree, depend on the context and purpose of a model and the platform. In the
case of NIEM-UML the platform is considered to be the artifacts that make up a NIEM model package, such as an
Information Exchange Package (IEP). A primary element of a NIEM package is a XML schema defined in
accordance with the NIEM NDR. Other aspects of the platform include the “Master Document” and other artifacts
that make up a NIEM model package. This provides a degree of separation of the technical aspects of the IEP (i.e.
XML schemas) from the business aspect. While XML Schema is less platform-specific than, say, a Java class, it is a
specific way to render information and therefore a platform. Other platforms of interest at this time include the
Resource Description Language (RDF) and JavaScript Object Notation, JSON.

The NIEM NDR [NIEM-NDR] and MPD Specification [NIEM-MPD] describe this XML Schema centric platform
as well as the principles and model behind it. The platform specifications are used by NIEM-UML without
alteration.

The NIEM-XML platform is expressed using W3C XML Schema (XSD) and XML technology. There are hundreds
of rules for how to use XSD. The NIEM NDR adds approximately 200 rules that define NIEM conformance by
generally constraining many XSD options. This enables greater interoperability and reuse while introducing an
acceptable NIEM learning curve. NIEM-UML significantly reduces the requirement to learn details of the NIEM

http://www.nomagic.com/products/cameo-workbench.html

NIEM-UML Modeling Guide

June 2012 4

NDR by employing the NIEM-PIM and the NIEM-PSM with MDA. The NIEM-PIM is intended to abstract the
business rules and constructs of NIEM from the details of the technology platform.

1.5.2 Intent of the PIM
While parts of the NIEM platform are specific to the technology and the way to use that technology, other parts of
NIEM are derived from the business requirements for an information exchange. The most striking example of this
are the controlled vocabularies represented in NIEM reference namespaces. These controlled vocabularies represent
the consensus of stakeholders, within specific communities of interest, on their information requirements and are
reused in information exchanges (for example, IEPDs). There are also rules and conventions for how elements are
named and how they are organized in a consistent structure. The NIEM-UML PIM, PSM, and mapping between
them represent and enforce NIEM rules and conventions.

The PIM profile enforces certain NIEM rules using the Object Constraint Language (OCL) and also extends UML
with “Stereotypes” and “Tagged Values” to represent NIEM specific concepts including but not limited to elements
of the NIEM vocabulary, the NIEM reference schema, and NIEM concepts and rules which underlie its structure and
maintain its consistency. While the PIM specializes NIEM, every effort has been made to make the representation of
NIEM in UML correspond to commonly accepted patterns of modeling in UML. Someone familiar with UML
should be able to start modeling quickly and in many cases, with minimal modification, may be able to reuse
existing models to derive NIEM PSM artifacts and ultimately NIEM artifacts.

A NIEM PIM conforms to the rules and structure of the PIM profile described in this document and, with NIEM-
UML conforming tooling and is able to produce a NIEM platform specification. Production of an IEPD from a PIM
model is accomplished by mapping the PIM model to an IEPD, via the NIEM-PSM, using MDA technologies.
Alternatively, an existing IEPD or domain update can be mapped to a PIM model via the reverse engineering
mappings.

As discussed in the NIEM platform clause above, an IEPD is specific to a particular requirement as well as to the
particular constrained structure of XML Schema described by the NDR and requirements outlined in the MPD
Specification. The PIM is intended to be closer to the level of abstraction that business stakeholders can deal with,
separating the concerns of the business information required from the specifics and complexities of the platform.

As part of the NIEM-UML specification the mapping from a PIM to the NIEM platform via the NIEM-PSM is
specified. The mapping specifications are implemented by tool builders and most users will never have to
understand them, but most users will be able to use them in the form of conforming tools. NIEM-UML conforming
tools can transform a PIM model to a NIEM platform IEPD by leveraging the PSM and in doing so make sure that
all of the business and technology rules are correctly applied because most of those artifacts are automatically
generated. A NIEM-UML modeler will not need to understand the platform specific rules, or even W3C XML
Schema, to build NIEM artifacts. Of course, developers will have to understand XML to use the NIEM platform.

NIEM-UML uses the NIEM-PIM and the NIEM-PSM to separate respective concerns based on the Model Driven
Architecture (MDA) standards of the Object Management Group (OMG).

1.5.3 Intent of the PSM
Another clause of this specification defines the NIEM PSM profile. A platform specific model defines a direct
representation of NIEM-XML, its structure and its technical rules when leveraging W3C XML Schema. The PSM is
intended to represent the technology specific requirements and structure of the NIEM platform.

This profile can be employed by users who have familiarity with NIEM and its representational concepts in XML
Schema. The PSM profile allows a user to design a UML model that is closely aligned with NIEM-conforming
XML schemas. It consists of a relatively small set of UML constructs and stereotypes that map to equivalent XML
schema constructs in NIEM. Conforming UML tools are able to import the UML representation (XMI) of the PSM
profile and subsequently provide support for creating NIEM-UML constructs and stereotypes, as well as for entering
the additional data required for NIEM conformance.

NIEM-UML Modeling Guide

June 2012 5

1.5.4 The NIEM PIM and the NIEM PSM
Figure 6-1 shows how the components of the NIEM-UML specification are used together in a conforming NIEM-
UML tool suite.

Figure 6-1 Components of the NIEM-UML specification

The component parts of the NIEM-UML specification are intended to be used together with tools to make it easy to
model NIEM in UML and produce valid NIEM platform specifications. The diagram above shows the relationships
between the elements of the NIEM-UML specification, a user’s model and the resulting MPD, e.g. an IEPD. It is
important to note that the MDA based structure and the separation of concerns between the PIM and PSM part of the
NIEM-UML specification allows for representation of NIEM under a different platform if required in the future or
to support integration of NIEM into legacy systems.

The intent of NIEM-UML (including the PIM and the PSM) is that tools can generate NIEM artifacts directly from
the model based on Model Driven Architecture (MDA) and transformations specified in this document. This
capability may or may not be achievable in a “generic” UML tool; supplemental tools or plug-ins may be required.

1.5.5 NIEM-UML Transformations
NIEM-UML also contains transformations from NIEM-UML business models (NIEM PIMs) to NIEM-UML
technical models (NIEM PSMs) and from NIEM-UML technical models to NIEM-compliant XML schemas and
MPDs. Further, stereotypes from the NIEM PSM profile can be used to enable provisioning of the NIEM PIM as a
set of NIEM MPD artifacts. Stereotypes from the NIEM PIM Profile can be added to a NIEM PSM as features to
enable transforming a NIEM PSM to a NIEM PIM.

NIEM-UML Modeling Guide

June 2012 6

To enable reuse of existing NIEM artifacts transformations are also provided to “reverse engineer” existing MPD
artifacts to NIEM-UML.

The foreward and reverse engineering of NIEM technical artifacts to and from models is fully supported by Cameo
NIEM-UML.

1.5.6 NIEM-UML Libraries
A central tenet of NIEM is reuse. NIEM-UML facilitates reuse by providing the NIEM reference namespaces as
NIEM-UML models. The reference namespaces represent the reusable information sharing vocabularies defined as
part of the NIEM process. These vocabularies are reused in all NIEM models.

The reference vocabularies are comprised of the “NIEM-Core” with extensions for 15 domains. Altogether the
reference vocabularies contain in excess of 7000 concepts ready to be reused. Cameo NIEM-UML helps users
understand and reuse the reference vocabularies.

NIEM-UML Modeling Guide

June 2012 7

2 NIEM-UML Modeling Guide
2.1 Overview

2.1.1 Introduction
Essential to NIEM-UML is respecting and supporting the distinct perspectives or “entry points” for using the NIEM-
UML profile:

• The platform independent perspective, optimized for a logical UML representation of NIEM using UML norms
and patterns.

• The platform specific perspective, optimized for a direct and isomorphic UML representation of NIEM as
defined in XML Schema.

• The model packaging perspective, optimized for representing the packaging of NIEM namespaces, modeled
from either the PIM or the PSM perspective, into NIEM MPDs.

Clause 2 specifies the kinds of conforming NIEM-UML models associated with each of the above three
perspectives: NIEM PIM, NIEM PSM and NIEM MPD models. The NIEM-UML profile is then structured into sub-
profiles used in creating each of these three kinds of models. Further, for simplicity and consistency, the NIEM PIM
and NIEM PSM profiles are based on a profile of common UML elements, constraints and stereotypes. This
provides a clear, precise and concise specification of each perspective while also clearly specifying overlapping
elements without redundancy.

Figure 7-1 shows the resulting structure of the NIEM-UML Profile in terms of the three perspectives.

Figure 7-1 Structure of the NIEM-UML Profile

The remainder of this overview provides a summary description of each of the platform independent, platform
specific and model packaging perspectives. Subsequent subclauses in this clause then discuss how to model various
NIEM concepts across the three perspectives.

Model Packaging Perspective

Platform Specific Perspective

Platform Independent Perspective

PIM
Conformance

Point

PSM
Conformance

Point

PIM
Model

Common
Profile

PSM
Model

MPD
Model

Specifies

MPD
Conformance

Point

Specifies

Imports

Imports

References

References

PIM
Profile

PSM
Profile

MPD
Profile

Applies

Applies

Applies

Specifies

Model Packaging Perspective

Platform Specific Perspective

Platform Independent Perspective

PIM
Conformance

Point

PSM
Conformance

Point

PIM
Model

Common
Profile

PSM
Model

MPD
Model

Specifies

MPD
Conformance

Point

Specifies

Imports

Imports

References

References

PIM
Profile

PSM
Profile

MPD
Profile

Applies

Applies

Applies

Specifies

NIEM-UML Modeling Guide

June 2012 8

2.1.2 Platform Independent Perspective
A NIEM Platform Independent Model (PIM) is represented using a simplified UML class model with extensions for
expressing NIEM semantics. The intent of the PIM is to capture a NIEM business vocabulary for use as a data
schema within an MPD. A NIEM PIM is used in combination with a NIEM MPD model to create a complete NIEM
specification.

The UML concepts shown in Table 7-1 have an interpretation in a NIEM-UML PIM and are supported by the
normative mapping from a NIEM-UML model to NIEM conformant artifacts via the standard mappings. While
other UML model elements may be used in a PIM for purposes of documentation or supporting other technologies,
such model elements have no defined meaning with respect to NIEM and will not impact the mapping to NIEM
artifacts.

Table 7-1 Platform Independent Perspective Modeling Summary

UML Element Stereotype
NIEM Concept

Reference Note

Package «Namespace» 7.2.1 Namespaces A namespace package models a NIEM data
schema

Types

Class

None

«ObjectType»

7.3.2 Object Types

Object type is the default for UML classes.

A NIEM object type represents data about
things with their own identity and lifespan
that have some existence. An object may or
may not represent a physical thing. It may
represent something conceptual.

See «RoleOf»
Property and
«RolePlayedBy»
Generalization

7.3.3 Role Types NIEM differentiates between an object and a
role of the object. The term “role” is used here
to mean a function or part played by some
object. A class is interpreted as a role by
means of a «RoleOf» association end or
«RolePlayedBy» generalization.

«AssociationType» 7.3.4 Association
Types

A NIEM association is a specific relationship
between NIEM objects. Associations are used
when a simple NIEM property is insufficient
to model the relationship clearly and when
properties of the relationship exist that are not
attributable to the objects being related. Each
end of the NIEM association is represented by
a UML association end.

Note that a UML association class may also
be used (see below).

«MetadataType» 7.3.5 Metadata
Types

NIEM metadata is defined as “data about
data.” This may include information such as
the security of a piece of data or the source of
the data. A Metadata Type models metadata.

NIEM-UML Modeling Guide

June 2012 9

Table 7-1 Platform Independent Perspective Modeling Summary

UML Element Stereotype
NIEM Concept

Reference Note

«AugmentationType»

See also «Augments»
Generalization

7.3.6 Augmentation
Types

A NIEM augmentation type is a complex type
that provides a reusable block of data that
may be added to object types or association
types.

«AdapterType» 7.3.7 Adapter Types An adapter type is a NIEM object type that
adapts external models for use within NIEM.
An adapter type creates a new class of object
that embodies a single concept composed of
external elements.

«Choice» 7.5.4 Choice Groups A choice is a group of properties such that
when used as the type of a property exactly
one of them may have a value in any instance
of an enclosing type.

«PropertyHolder» 7.5.2 Property
Holders and
Property References

Property holders are used to define properties
that have no specific owner, or “top level”
properties. These properties are generally
referenced by other properties.

isAbstract 7.3.1 Complex
Types (abstract)

An abstract class may not have a direct
instance, non-abstract subclasses of an
abstract class may have instances.

Association Class None 7.3.4 Association
Types

A NIEM association is a specific relationship
between NIEM objects. Associations are used
when a simple NIEM property is insufficient
to model the relationship clearly and when
properties of the relationship exist that are not
attributable to the objects being related. UML
association classes may be used to model
NIEM associations with some limitations.

Note that an «AssociationType» class may
also be used, see above.

DataType

Also applies to
PrimitiveType
and Enumeration
which are
DataTypes

«Union» 7.4.4 Unions A union is a simple type whose values are the
union of the values of one or more other
simple types, which are the member types of
the union.

«List» 7.4.5 Lists A list is a simple type having values each of
which consists of a finite-length (possibly
empty) sequence of atomic values. The values
in a list are drawn from some atomic simple
type (or from a union of atomic simple types),
which is the item type of the list.

NIEM-UML Modeling Guide

June 2012 10

Table 7-1 Platform Independent Perspective Modeling Summary

UML Element Stereotype
NIEM Concept

Reference Note

«ValueRestriction»

7.4.1 Simple Types The «ValueRestriction» stereotype applies to
a UML data type that is a specialization of a
more general data type. It defines restrictions
on which values of the general data type are
allowed as values of the specialized data type.

PrimitiveType None 7.4.2 Primitive
Types

A primitive type is a simple type defined in
terms of a predefined set of atomic values
such as strings and numbers.

Enumeration None 7.4.3 Code Types A UML enumeration represents a NIEM code
type, which is a simple type, restricted to a
specific set of values, each of which has a
known meaning beyond the text
representation. These values may be
meaningful text or may be a string of
alphanumeric identifiers that represent
abbreviations for literals. Each enumeration
literal is a code value.

Relations

Aggregation
(Property /
Association End)

None 7.5.1 Content and
reference properties

A UML aggregation kind of “shared” or
“composite” will result in content nested
within the enclosing content. UML
aggregation kind of “none” will result in a
reference.

Generalization None 7.3.1 Complex
Types (type
extension)

Each NIEM type may extend at most one
other type due to XSD restrictions. Properties
of the superclass are inherited and the
subclass is substitutable for the superclass.

«Augments» 7.3.6 Augmentation
Types

Augments specifies what type an
augmentation augments. Multiple
augmentations may be inherited by a type or
used as the types of properties.

Note that a property with an
«AugmentationApplication» as its type may
also be used.

«RolePlayedBy» 7.3.3 Role Types RolePlayedBy defines the subtype as a role of
the supertype. Such a role may have at most
one instance per base type.

Realization «References» 7.5.2 Property
Holders and
Property References

A References realization reuses class and
property definitions from another class or
namespace and is the basis for reusing NIEM
reference namespaces.

NIEM-UML Modeling Guide

June 2012 11

Table 7-1 Platform Independent Perspective Modeling Summary

UML Element Stereotype
NIEM Concept

Reference Note

Usage
dependency

«Augmentation
Application»

7.3.6 Augmentation
Types

Augmentation application is a relation
between a property whose type is an
«AugmentationType» and a class. It restricts
the classes that may have the property.

Note that an «Augments» generalization may
also be used, see above.

«Metadata
Application»

7.3.5 Metadata
Types

Metadata application is a relation between a
«MetadataType» class and any other class. It
restricts the types that may have the metadata.

Properties

Property /
Association End

None 7.5.1 Properties A property relates a NIEM object (the
subject) to another object or to a value (the
object). Property data describes an object as
having a characteristic with a specific value or
a particular relationship to another object.

«RoleOf» 7.3.3 Role Types NIEM differentiates between an object and a
role of the object. The term “role” is used here
to mean a function or part played by some
object. Having a «RoleOf» property defines
the owning class as a role. The role may have
multiple occurrences for each base type.

Multiplicity
(Property)

None 7.5.1 Properties UML Multiplicity constrains how many
values a NIEM property may have.

Subsets
(Property)

None 7.5.3 Substitution
Groups

Subset defines a property as being
substitutable for another property. This
expresses the NIEM substitution group
concept.

Derived Union
(Property)

None 7.5.3 Substitution
Groups

A derived union defines a property whose
values are entirely derived as the union of the
values of properties that subset it. This
expresses the NIEM concept of an abstract
property.

General

Name
(NamedElement)

None 7.2.2 NIEM Names NIEM PIM names are largely unconstrained
as the mapping specifications will map the
UML names into NIEM conformant names in
the PSM and MPD artifacts. Naming
conventions such that reasonable NIEM
names are produced should still be practiced.

NIEM-UML Modeling Guide

June 2012 12

Table 7-1 Platform Independent Perspective Modeling Summary

UML Element Stereotype
NIEM Concept

Reference Note

Element «ReferenceName» 7.2.2 NIEM Names Reference name specifies the NIEM
conformant name for an element. This may be
required if the name produced by the PIM-
PSM mapping does not match a reference
namespace or is otherwise not as required.

Comment None

«Documentation»

7.2.1 Namespaces

7.3.1 Complex
Types

7.4.1 Simple Types

7.5.1 Properties

If a UML modeling element owns only one
comment, it will be used by default as the
NIEM documentation for that element.
Otherwise the «Documentation» stereotype
must be applied to one owned comment.

Documentation text will be converted to being
NIEM compliant.

2.1.3 Platform Specific Perspective
A NIEM Platform Specific Model (PSM) is represented using a simplified UML class model with extensions for
expressing a NIEM XML Schema (XSD). The intent of a PSM is to capture a direct representation of a NIEM XML
schema in UML. A NIEM PSM is used in combination with a NIEM MPD model to create a complete NIEM
specification.

The UML concepts shown in Table 7-2 have an interpretation in a NIEM-UML PSM and are supported by the
normative mapping from a NIEM-UML model to NIEM conformant artifacts via the mappings specified in Clause
9. Other UML elements are not permitted in a NIEM PSM if the PSM profile is applied “strictly”.

Table 7-2 Platform Specific Perspective Modeling Summary

UML Element Stereotype NIEM Concept
Reference

Note

Package «Namespace» 7.2.1 Namespaces A «Namespace» package models a NIEM data
schema

Types

Class «ObjectType» 7.3.2 Object Types

A NIEM object type represents data about
things with their own identity and lifespan
that have some existence. An object may or
may not represent a physical thing. It may
represent something conceptual.

«ObjectType»

(Used as a role)

7.3.3 Role Types NIEM differentiates between an object and a
role of the object. The term “role” is used here
to mean a function or part played by some
object. A class is interpreted as representing a
role type if it has one or more properties that
identify the base type(s) of the role. By the
NDR naming conventions, such properties
must have names beginning with “RoleOf”.

NIEM-UML Modeling Guide

June 2012 13

Table 7-2 Platform Specific Perspective Modeling Summary

UML Element Stereotype NIEM Concept
Reference

Note

«AssociationType» 7.3.4 Association
Types

A NIEM association is a specific relationship
between NIEM objects. Associations are used
when a simple NIEM property is insufficient
to model the relationship clearly and when
properties of the relationship exist that are not
attributable to the objects being related. Each
end of the NIEM association is represented by
a UML association end.

«MetadataType» 7.3.5 Metadata
Types

NIEM metadata is defined as “data about
data.” This may include information such as
the security of a piece of data or the source of
the data.

«AugmentationType»

7.3.6 Augmentation
Types

A NIEM augmentation type is a complex type
that provides a reusable block of data that
may be added to object types or association
types.

«AdapterType» 7.3.7 Adapter Types An adapter type is a NIEM object type that
adapts external models for use within NIEM.
An adapter type creates a new class of object
that embodies a single concept composed of
external elements.

«Choice» 7.5.4 Choice Groups A choice is a group of properties such that
when used as the type of a property exactly
one of them may have a value in any instance
of an enclosing type.

«PropertyHolder» 7.5.2 Property
Holders and
Property References

Property holders are used to define properties
that have no specific owner, or “top level”
properties. These properties are generally
referenced by other properties.

isAbstract 7.3.1 Complex
Types (abstract)

An abstract class may not have a direct
instance, non-abstract subclasses of an
abstract class may have instances.

DataType

Also applies to
PrimitiveType
and Enumeration
which are
DataTypes

«Union» 7.4.4 Unions A union is a simple type whose values are the
union of the values of one or more other
simple types, which are the member types of
the union.

«List» 7.4.5 Lists A list is a simple type having values each of
which consists of a finite-length (possibly
empty) sequence of atomic values. The values
in a list are drawn from some atomic simple
type (or from a union of atomic simple types),
which is the item type of the list.

NIEM-UML Modeling Guide

June 2012 14

Table 7-2 Platform Specific Perspective Modeling Summary

UML Element Stereotype NIEM Concept
Reference

Note

«ValueRestriction»

7.4.1 Simple Types The «ValueRestriction» stereotype applies to
a UML data type that is a specialization of a
more general data type. It defines restrictions
on which values of the general data type are
allowed as values of the specialized data type.

PrimitiveType None 7.4.2 Primitive
Types

A primitive type is a simple type defined in
terms of a predefined set of atomic values
such as strings or numbers.

Enumeration None 7.4.3 Code Types A code type is a simple type that represents a
list of values, each of which has a known
meaning beyond the text representation.
These values may be meaningful text or may
be a string of alphanumeric identifiers that
represent abbreviations for literals. Each
enumeration literal is a code value.

DataType «XSDRepresentation
Restriction»

XSD Restriction Restricts how data is formatted in XML

Relations

Aggregation
(Property)

None 7.5.1 Content and
reference properties

A UML aggregation kind of “shared” or
“composite” will result in content nested
within the enclosing content. UML
aggregation kind of “none” will result in a
reference.

Generalization None 7.3.1 Complex
Types (type
extension)

Each NIEM type may extend at most one
other type due to XSD restrictions. Properties
of the superclass are inherited and the
subclass is substitutable for the superclass.

«XSDRestriction» XSD Restriction Defines a type as restrictive the possible
values in another type

Realization «References» 7.5.2 Property
Holders and
Property References

A References realization reuses class and
property definitions from another class or
namespace.

NIEM-UML Modeling Guide

June 2012 15

Table 7-2 Platform Specific Perspective Modeling Summary

UML Element Stereotype NIEM Concept
Reference

Note

«XSDSimple
Content»

7.3.2 Object Types

The «XSDSimpleContent» stereotype
represents a relationship between two type
definitions: the first is a complex type
definition with simple content whose content
type is the second. This relationship is
implemented in XML Schema through base
attribute on the xsd:extension or
xsd:restriction element of the first type
definition, the actual value of which resolves
to the second type definition.

Usage
dependency

«Augmentation
Application»

7.3.6 Augmentation
Types

Augmentation application is a relation
between a property and a class. It restricts the
classes that may have the property.

«Metadata
Application»

7.3.5 Metadata
Types

Augmentation application is a relation
between a metadata type and any other type.
Its application restricts the types that may
have the metadata

Properties

Property «XSDProperty» 7.5.1 Properties A property relates a NIEM object (the
subject) to another object or to a value (the
object). Property data describes an object as
having a characteristic with a specific value or
a particular relationship to another object.

Property «XSDAnyProperty» 7.5.1 Properties An «XSDAnyProperty» property may have a
value of any type. It is implemented in XML
schema as an xsd:any.

Multiplicity
(Property)

None 7.5.1 Properties Multiplicity constrains how many values a
property or association end may have.

Subsets
(Property)

None 7.5.3 Substitution
Groups

Subset defines a property as being
substitutable for another property. This
expresses the NIEM substitution group
concept.

Derived Union
(Property)

None 7.5.3 Substitution
Groups

Derived union defines a property whose
values are entirely derived as the union of the
values of properties that subset it. This
expresses the NIEM concept of an abstract
property.

NIEM-UML Modeling Guide

June 2012 16

Table 7-2 Platform Specific Perspective Modeling Summary

UML Element Stereotype NIEM Concept
Reference

Note

General

Name
(NamedElement)

None 7.2.2 NIEM Names The names of UML elements in a PSM must
comply with the NDR rules for names within
a NIEM XML Schema.

Comment «Documentation» 7.2.1 Namespaces

7.3.1 Complex
Types

7.4.1 Simple Types

7.5.1 Properties

Each UML model element in a PSM that
represents a NIEM component that is required
to have documentation must have one owned
comment that has the «Documentation»
stereotype applied.

2.1.4 Model Packaging Perspective
A NIEM Model Package Description specifies the NIEM artifacts that are to be produced from a NIEM-UML model
and rendered into a NIEM MPD package. The ModelPackageDescription imports PIM and/or PSM namespaces and
produces an MPD based on the provided metadata contained within the stereotypes.

The UML concepts shown in Table 7-3 have an interpretation in a NIEM-UML MPD model and are supported by
the normative mapping from a NIEM-UML model to NIEM conformant artifacts via the mappings specified in
Clause 9.

Table 7-3 Model Packaging Perspective Modeling Summary

UML Element Stereotype NIEM Concept
Reference

Note

Component «ModelPackage
Description»

Model Package
Description

A Model Package Description (MPD)
describes a package of NIEM artifacts, these
include IEPDs and domain updates. There are
multiple kinds of MPDs as described in the
Model Package Description Specification
[NIEM-MPD].

Dependency «ModelPackage
Description
Relationship»

Model Package
Description
Relationship

A Model Package Description Relationship
defines the relationship between MPDs. This
includes dependency and version information.

ElementImport «ModelPackage
Description File»

MPD Artifact Model Package Description File import
defines a modeled namespace or artifact that
is to be included in an MPD.

Package None None Packages may be used to organize MPD
models but have no interpretation for a NIEM
MPD.

NIEM-UML Modeling Guide

June 2012 17

2.2 Modeling Namespaces

2.2.1 Namespaces

2.2.1.1 Background
A namespace provides a means to qualify the names of a group of NIEM components. Following the conventions of
[XMLNamespaces], a namespace is identified by a URI reference. All the names within a single NIEM namespace
are required to be distinct, though the same name may be used across different namespaces.

NOTE. The XML Schema specification defines separate symbol spaces for type, attribute and element names,
allowing components in different symbol spaces to have the same name, even within a single namespace. However,
the NIEM naming rules imply the use distinct names across all the symbol spaces of a namespace [NDR 9].

2.2.1.2 Representation

Common
A NIEM namespace is represented as a UML package with the stereotype «Namespace» applied, with the
namespace URI provided as the value of the targetNamespace attribute of the stereotype. Table 7-4 shows the kinds
NIEM components whose names are included in a NIEM namespace along with how these components are
represented as UML model elements within the «Namespace» package that represents the NIEM namespace.

Table 7-4 NIEM Components included in a NIEM Namespace

NIEM Component UML Representation

Complex Type Class (see Subclause 7.3)

Simple Type Data Type (see Subclause 7.4)

Property Declaration Property (see Subclause 7.1)

A «Namespace» package is used to group those model elements of the kinds shown in Table 7-4 that represent
NIEM components to be placed in a single NIEM namespace. A «Namespace» package may have subpackages, and
any relevant model element in any of those subpackages (or any further nested packages, to any level) is also
considered to represent a member of the NIEM namespace identified for the «Namespace» package. However, a
«Namespace» package may not be contained, directly or indirectly, in any other «Namespace» package.

Sometimes, a NIEM-UML model will import non-NIEM models or otherwise include modeling for non-NIEM
content relevant to NIEM messages (see also Subclause 7.3.7 on Adapter Types). The «Namespace» stereotype may
also be applied to packages containing models of non-NIEM conformant content, in order to specify a
targetNamespace URI. However, in this case the isConformant attribute of the stereotype should be set to false.

PIM
In a PIM, the concept of a NIEM namespace is extended to encompass the representation of a platform-independent
information model. The PIM «InformationModel» stereotype is a specialization of the common «Namespace»
stereotype that also allows for the identification of a default purpose for the represented information model (such as
reference, subset, extension or exchange). If no other purpose is specified when an «InformationModel» package is
referenced in an MPD model, then the default purpose is used (see Subclause 7.6.2). This allows for the
identification of information models in a PIM that are, e.g., specifically intended to be subsets of references models,
extensions of such subsets, etc.

An «InformationModel» package provides the logical scoping for the NIEM naming of model elements representing
NIEM components (see Subclause 7.2.2). This includes UML properties representing NIEM properties, even though
a UML property is not a packageable element. The UML namespace for a property is the UML classifier that owns

NIEM-UML Modeling Guide

June 2012 18

the property. However, in NIEM every property declaration is considered to be “top level”, and, so, the NIEM
property names are included in the NIEM namespace. (This is discussed further in Subclause 7.5.2.)

Every «InformationModel» package must be documented. If the package has only one owned comment, that is
considered to provide the required documentation. Otherwise, the package must have exactly one owned comment
with the stereotype «Documentation» applied that provides the required documentation.

PSM
A «Namespace» package represents an XML schema. The target namespace for the schema is supplied as the value
of the targetNamespace attribute of the stereotype. The elements in the package (or any subpackage, to any level of
nesting) representing NIEM components (as indicated in Table 7-4) are implemented as components of the XML
schema represented by package. If the isConformant attribute is true, then the represented XML schema shall be
NIEM-conformant.

A «Namespace» package in a PSM must have an owned comment with the stereotype «Documentation» applied, the
body of which provides the definition documentation for the represented XML schema.

2.2.1.3 Mapping Summary

PIM to PSM Mapping
• A package in a PIM shall map to a package in the PSM, with corresponding owned members mapped from the

PIM. If the PIM package has the «Namespace» stereotype applied, then the PSM package also has the
«Namespace» stereotype applied, with the same values for stereotype attributes. If the PIM Package has the
«InformationModel» stereotype applied, then the PSM package has the «Namespace» stereotype applied, with
the same values for the common stereotype attributes (see Subclause 7.6.2.3 on the handling of the
«InformationModel» defaultPurpose attribute for MPD modeling).

• If a «Namespace» or «InformationModel» package in a PIM has exactly one owned comment, then the
corresponding PSM package shall have an owned comment with the «Documentation» stereotype applied and
the same body as the PIM package’s comment. Otherwise, the PSM package shall have an owned comment
with the «Documentation» stereotype applied and the same body as the «Documentation» comment owned by
the PIM package. The comment body is adjusted to conform to NIEM conventions.

PSM to XML Schema Mapping
• A package in a PSM with the stereotype «Namespace» applied shall map to an XSD schema with «Namespace»

stereotype attributes mapped as given in Table 7-5 and elements in the package mapped per Table 7-4.

Table 7-5 Mapping of a «Namespace» package to an xsd:schema

Stereotype Attributes Schema Property

Namespace::targetNamespace xsd:schema/@targetNamespace

Namespace::version xsd:schema/@version

Namespace::isConformant xsd:schema/xsd:annotation/xsd:appinfo/i:ConformantIndicator

• The «Documentation» comment owned by a «Namespace» package in the PSM shall map to the documentation
for the XML schema mapped from the package, with the body of the comment providing the
xsd:schema/xsd:annotation/xsd:documentation for the schema definition.

NIEM-UML Modeling Guide

June 2012 19

2.2.1.4 Example

PIM and PSM Representation
Figure 7-2 shows an example of a NIEM namespace represented as a package. The package contains a class that
represents a NIEM object type (see Subclause 7.3.2). The properties of this class represent both the declaration of
NIEM properties and the use of those properties in the context of the object type represented by the class (see
Subclause 7.5.2). Therefore, the names of the object type and all the properties are members of the identified NIEM
namespace.

Figure 7-2 Representation of a NIEM-conforming XML schema as a UML package

XML Schema Representation
The package shown in Figure 7-2 represents the following XML schema (with the type definitions elided):
<xsd:schema

 targetNamespace="http://niem.gov/niem/domains/cbrn/2.1"

 version="1">

 <xsd:annotation>

 <xsd:documentation>

 Chemical, Biological, Radiological, and Nuclear Domain

 </xsd:documentation>

 <xsd:appinfo>

 <i:ConformantIndicator>true</i:ConformantIndicator>

 </xsd:appinfo>

 </xsd:annotation>

 ...

</xsd:schema>

2.2.2 NIEM Names

2.2.2.1 Background
The NIEM NDR includes extensive rules on the naming of NIEM components. A NIEM name is a name of a NIEM
component that follows the naming rules given in [NDR 9]. A NIEM name has the form of a sequence of required
object class, property and representation terms, with optional qualifiers for these terms.

2.2.2.2 Representation

Common
The uniqueness rules for NIEM component names in a NIEM namespace are based on the use of proper NIEM
names, regardless of what names are used for the corresponding model elements in a PIM. Therefore, every model
element in a NIEM-UML model that represents a NIEM component as listed in Table 7-4 is considered to have a
corresponding NIEM name.

NIEM-UML Modeling Guide

June 2012 20

PIM
The names of the UML model elements representing NIEM components in a PIM are not required to comply with
the NDR naming rules. In particular, the names of UML elements do not need to include the representation-term
suffix, which may be entirely determined by the kind of the element.

NOTE. Part of the rationale for including a representation term in all NIEM names is: “It helps prevent name
conflicts and confusion. For example, elements [properties] and types may not be given the same name.” [NDR
9.11] However, UML naming rules allow model elements of different kinds (e.g., classes and data types) to have the
same name within a single UML namespace, and properties are scoped in classifier namespaces rather than package
namespaces. Therefore, UML models generally do not use a convention of having a representation term suffix on
model element names.

Nevertheless, every model element in a PIM that represents a NIEM component has a NIEM name. The NIEM
name for a PIM element may be specified explicitly by applying the «ReferenceName» stereotype to the element
and setting the NIEMName attribute. If the PIM element does not have the «ReferenceName» stereotype applied,
and its UML name conforms to the NDR naming rules, then this is also the NIEM name for the element. Otherwise,
the NIEM name for the element is constructed from the UML name (generally by appending a representation term
suffix) as specified in the default PSM mapping rules in subsequent subclauses covering each kind of item.

NOTE. The rules for constructing NIEM names are intended to produce names that are syntactically valid according
to the rules for required name prefixes and/or suffixes. It is still the responsibility of the modeler to provide UML
names for model elements representing NIEM components that have semantically appropriate object-class, property
and qualifier terms (per [NDR 9.8., 9.9, 9.10]), so that the constructed NIEM names are fully conformant.

The name of PSM element mapped from a PIM element shall be the NIEM name of the PIM element. (Note that this
name rule does not apply if the PIM element represents a member of a non-NIEM namespace – that is, if the
element is contained in a «Namespace» package with isConformant = false.)

PSM
The names of UML model elements representing NIEM components in a PSM are required to comply with the NDR
naming rules. Therefore, the NIEM name of such a model element in a PSM is the same as its UML name.

2.2.2.3 Mapping Summary

PIM to PSM Mapping
• If a class, data type or property in a PIM is contained (directly or indirectly) within a «Namespace» package

with isConformant=true, then it shall map to a corresponding class, data type or property in the PSM whose
name is the NIEM name of the PIM element. Otherwise it shall map to a corresponding PSM element with the
same name as the PIM element.

• If an element in a PIM has the «ReferenceName» stereotype applied, then its NIEM name shall be the value of
the NIEMName attribute of the stereotype.

2.2.2.4 Example
Figure 7-3 shows a class representing a NIEM object type (see Subclause 7.3.2) with the name PersonClass, which
does not conform to the NIEM naming rules for object types. The class has the «ReferenceName» stereotype
applied, giving it a NIEM name of “PersonType”, which is conformant.

NIEM-UML Modeling Guide

June 2012 21

Figure 7-3 Specification of a NIEM name using the «ReferenceName» stereotype

2.3 Modeling Complex Types

2.3.1 Complex Types

2.3.1.1 Background
A complex type represents any structured data used for information exchange [NIEM-NDR 7.4.1]. A NIEM type
shall be one of the following kinds of types:

• An object type

• A role type

• An association type

• A metadata type

• An augmentation type

• An adapter type

2.3.1.2 Representation

Common
A complex type is represented as a UML class. The different kinds of complex type are distinguished using the
stereotypes summarized in Table 7-6, which are all specializations of the abstract «NIEMType» stereotype.
Subsequent subclauses provide the details on how to model each kind of complex type.

NIEM-UML Modeling Guide

June 2012 22

Table 7-6 Complex Type Representation

Complex Type Representation

Object Type Apply «ObjectType» to the class. (In a PIM this is the default, so the stereotype
is not required.) See Subclause 7.3.2.

Role Type Identify one or more properties as role-of properties. (In a PIM, this may be
done by applying «RoleOf» to a property or by using a «RolePlayedBy»
generalization.) See Subclause 7.3.3.

Association Type Apply «AssociationType» to the class. (In a PIM, alternatively use an
association class.) See Subclause 7.3.4.

Metadata Type Apply «MetadataType» to the class. See Subclause 7.3.5.

Augmentation Type Apply «AugmentationType» to the class. (In a PIM, alternatively use an
«Augments» generalization.) See Subclause 7.3.6.

Adapter Type Apply «AdapterType» to the class. See Subclause 7.3.7.

In general, a «NIEMType» class may be the generalization for other «NIEMType» classes of the same type. A
general class may optionally be modeled as abstract, meaning that there are no direct instances of that class itself,
only of (non-abstract) subclasses of the class.

A «NIEMType» class may also be the client of a realization stereotyped as «Restriction», whose supplier is another
«NIEMType» class of the same type, the base type for the restricted type. In this case, the client class may list a
subset of the attributes of the supplier class. Any attributes not so listed must have a multiplicity lower bound of 0 in
the supplier class. Instances of a restricted type are considered to be substitutable for instances of the base type, but
any attributes not explicitly listed in the restricted type are mandated to be empty in any instance of that type.

 (Note that an «AdapterType» class may not participate in generalizations or «Restriction» realizations – see
Subclause 7.3.7.)

PIM
There are a number of default notations and additional representations allowed in a PIM that are not allowed in a
PSM. These are indicated in Table 7-6 and discussed further in subsequent subclauses.

Every «NIEMType» class must be documented. If the class has only one owned comment, that is considered to
provide the required documentation. Otherwise, the class must have exactly one owned comment with the stereotype
«Documentation» applied that provides the required documentation.

In a PIM, additional notations using generalization are allowed in the modeling of role and augmentation types (see
Subclauses 7.3.3 and 7.3.6). However, a «NIEMType» class may be the special class in at most one generalization
that is not marked as a «RolePlayedBy» stereotype or the generalization of an augmentation type, and it may not
have such a generalization if it is the client of a «Restriction» realization.

PSM
A «NIEMType» class in a PSM represents a NIEM type that is implemented as a complex type definition. The UML
properties of the class represent the NIEM properties (XSD attributes and elements) of the complex type.

A «NIEMType» class in a PSM must have an owned comment with the «Documentation» stereotype applied, the
body of which becomes the content of the documentation element in the complex type definition.

The class may be the special class in at most one generalization, the general class of which must also represent a
NIEM type. The complex type represented by the general class is then the base type for the complex type

NIEM-UML Modeling Guide

June 2012 23

represented by the special class, and the complex type represented by the special class is an extension of the base
type. A class marked as abstract represents an abstract complex type.

The class may be the client of at most one «Restriction» realization, and it may not be both the client of a
«Restriction» realization and the special class in a generalization. The complex type represented by the supplier
class is then the base type for the complex type represented by the client class, and the complex type represented by
the client class is a restriction of the base type.

2.3.1.3 Mapping Summary

PIM to PSM Mapping
• A class in a PIM shall map to a corresponding class in the PSM, with corresponding properties mapped from the

properties of the PIM class.

• If the class is the special classifier in a generalization, then the corresponding class in the PSM shall be the
special classifier in a generalization to the class mapped from the general class in the PIM.

• If the class is the client of a realization with the «Restriction» stereotype applied, then the corresponding class
in the PSM shall be the client of a «Restriction» realization whose supplier is the class mapped from the
supplier class in the PIM.

• If a «NIEMType» class in a PIM has exactly one owned comment, then the corresponding PSM class shall have
an owned comment with the «Documentation» stereotype applied and the same body as the PIM class
comment. Otherwise, the PSM class shall have an owned comment with the «Documentation» stereotype
applied and the same body as the «Documentation» comment owned by the PIM class. The comment body is
adjusted to conform to NIEM conventions.

PSM to XML Schema Mapping
• A class in a PSM with a «NIEMType» stereotype (i.e., one of the stereotypes listed in Table 7-4) applied shall

map to a corresponding complex type definition with the xsd:complexType/@name given by .the class name.

• If the class is the specific classifier in a generalization, then the corresponding complex type definition shall be
an extension, with the base type definition being the type definition mapped from the general class.

• If the class is the client of a realization with the «Restriction» stereotype applied, then the corresponding
complex type definition shall be a restriction, with the base type definition being the type definition mapped
from the supplier class

• If the class is not the specific classifier in a generalization or the client of a «Restriction» realization, then the
base type definition for the complex type definition shall be s:ComplexObjectType and the complex type
shall be an extension.

• The «Documentation» comment owned by a «NIEMType» class in the PSM shall map to the documentation for
the XML complex type definition mapped from the class, with the body of the comment providing the
xsd:complexType/xsd:annotation/xsd:documentation for the complex type definition.

2.3.2 Object Types

2.3.2.1 Background
An object type is a type definition, an instance of which asserts the existence of an object. An object type represents
some kind of object: a thing with its own lifespan that has some existence. The object may or may not be a physical
object. It may be a conceptual object. [NIEM-NDR 7.4.1]

NIEM-UML Modeling Guide

June 2012 24

2.3.2.2 Representation

Common
A NIEM object type is represented as a UML class with the stereotype «ObjectType» applied. The properties of an
«ObjectType» class model the structured data represented by the object Type.

NOTE. In NIEM, the term object is used only to refer to an instance of an object type, whereas in UML an object
may be the instance of any class. In order to avoid confusion due to this difference in terminology, the qualified
terms NIEM object and UML object will be used in this document.

PIM
In a PIM, a class representing an object type is not required to be stereotyped. A class with no stereotype is
considered by default to be an object type.

The properties of a class may be represented either as attributes of the class or opposite ends of associations in
which the class participates. The modeling of properties is discussed further in Subclause 7.1.

PSM
An «ObjectType» class represents a NIEM object type that is implemented in XML Schema as a complex type
definition. Normally, the complex type definition for an object type will have complex content. The owned attributes
of the «ObjectType» class represent the property references (attribute uses and element particles) within the complex
content.

However, a PSM may also explicitly model the case of an object type with simple content. If the «ObjectType» class
is the client of an «XSDSimpleContent» realization, then it represents an object type that is implemented as a
complex type definition with simple content. The simple content is given by the simple type represented by the
supplier of the «XSDSimpleContent» realization, which must be a UML data type (see Subclause 7.4 on modeling
simple types).

2.3.2.3 Mapping Summary

PIM to PSM Mapping
• A class in a PIM with no stereotype applied that is not the special class in a «Augments» generalization (see

Subclause 7.3.6) shall map to a class in the PSM with the «ObjectType» stereotype applied.

• If a class in a PIM representing an object type does not have the «ReferenceName» stereotype applied, then its
NIEM name is determined as follows:

o If the PIM class name ends in “Type”, then the NIEM name shall be the same as the UML name.

o Otherwise, the NIEM name be the PIM class name with “Type” appended.

PSM to XML Schema Mapping
• If a class in a PSM with the «ObjectType» stereotype applied is the client of a «XSDSimpleContent»

realization, then the complex type definition mapped from the class shall have simple content with the simple
type mapped from the supplier of the realization as its base.

• If a class in a PSM with the «ObjectType» stereotype applied is not the client of a «XSDSimpleContent»
realization, then the complex type definition mapped from the class shall have complex content and:

o The properties of the class shall map to corresponding property references (XSD attribute uses and element
particles) in the complex content of the complex type definition mapped from the class.

o If the class is not the specific classifier in a generalization, then the complex type definition mapped from
the class shall be an extension with the base type being s:ComplexObjectType.

NIEM-UML Modeling Guide

June 2012 25

2.3.2.4 Examples

PIM Representation
Figure 7-4 shows an example of a Person object type represented as a class in a PIM. The identification of the class
as representing an object type is implicit, since it has no stereotype.

Figure 7-4 Representation of a NIEM object type as a UML class in a PIM

PSM Representation
Figure 7-5 shows the same object type represented as a class in a PSM. The class is structurally identical to the
representation in the PIM, but the stereotype «ObjectType» is explicit in the PSM and the class is named
PersonType, conforming to the NIEM NDR naming rules for object types [NIEM-NDR 9.12.1]. Note also the
attached «Documentation» comment.

Figure 7-5 Representation of a NIEM object type as a UML class in a PSM

XML Schema Representation
The complex type definition corresponding to the PSM PersonType class is then (with the property declarations
elided):
<xsd:complexType name="PersonType">

<xsd:annotation>

<xsd:documentation>A type for a human being.</xsd:documentation>

<xsd:appinfo>

 <i:Base i:name="ComplexObjectType"/>

</xsd:appinfo>

</xsd:annotation>

<xsd:complexContent>

<xsd:extension base="s:ComplexObjectType">

...

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

NIEM-UML Modeling Guide

June 2012 26

2.3.3 Role Types

2.3.3.1 Background
A role is a function or part played by some NIEM object. A role type is a type that represents a particular function,
purpose, usage, or role of a NIEM object. [NIEM-NDR 7.4.2]

2.3.3.2 Representation

Common
The simplest way to represent a role is simply to use a property, which models a function played by a NIEM object
in some context, where the name of the property is the role name. In particular, a simple role such as this would
most often be represented in UML as an association end. No stereotype is required. (See also Subclause 7.1 on the
modeling of properties.)

However, in many cases there is a need to represent characteristics and additional information associated with a role.
In this case, a role type provides a location for this additional information. A role type is modeled as an object type
(see Subclause 7.3.2) with a role-of property. The type of this role-of property is the base type of the role type, and
instances of the base type are said to play the role defined by the role type.

PIM
In a PIM, a role type may be defined either by explicitly modeling a role-of property or by modeling the role type
with a generalization to the base type. If an explicit role-of property is modeled, then it is identified by applying the
«RoleOf» stereotype to the UML property representing it. If a generalization is used, then this is identified by
applying the «RolePlayedBy» stereotype to it.

An explicit «RoleOf» property of a role type may be the opposite end of an association between the role type and its
base type (note that it is the association end that is stereotyped, not the association). If the «RoleOf» property is an
association end, then the multiplicity of the near end of the association may be used to distinguish between two
semantics interpretations of the concept of a “role”:

1. The role is repeated for each relationship that expresses the role. In this case the near end multiplicity shall be
0..*. This is also the only interpretation possible with the role-of property is not modeled as an association end.

For example, consider a Victim role type with a Person base type. In this interpretation, there would one victim
object each time a person was a victim. This means that there could be many victim objects for each person and
one victim object each time the person was a victim.

2. The role occurs at most once for each base object. In this case the near end multiplicity shall be 0..1.

In this interpretation of the Victim example, each person may play the victim role at most once – there may only
be zero or one victim object for each person object. Each such victim object would need to capture information
on all the crimes of which the person has been a victim. This interpretation corresponds more closely to a
“victim data base”, with at most one entry for each person.

Modeling a role type as a specialization of the base type is an alternative representation for the second interpretation
above. In this case the role type is not modeled with an explicit role-of property, but the generalization to the base
type is instead stereotyped «RolePlayedBy». Semantically, this model represents the ability to dynamically classify
instances of the base type as also being classified as being instances of the role type (UML semantics allow a UML
object to have multiple types that may change over time). Since an instance of the base type can only be classified as
an instance of the role type or not (corresponding to playing the role or not), the use of a «RolePlayedBy»
generalization always corresponds to the second semantic interpretation of “role” above. (Note also that the
specialization of a class by a role type is orthogonal to any other specializations of the base type. A base type may
play multiple roles and may also be separately specialized.)

NIEM-UML Modeling Guide

June 2012 27

PSM
In a PSM, a role-of property is identified by having a naming beginning with “RoleOf”. Such a property must have
aggregation=none. A role type is otherwise implemented exactly as for any other object type. (Note that this means
the interpretation, above, can’t be explicitly represented in a PSM.)

2.3.3.3 Mapping Summary

PIM Representation Mapping
• An «ObjectType» class with a generalization that is stereotyped «RolePlayedBy» shall be considered equivalent

to an otherwise identical class with the generalization replaced by a unidirectional association to the general
(base) class such that:

o The opposite (navigable) association end has the same name as the base class, multiplicity 1..1 and the
stereotype «RoleOf» applied. If the «RolePlayedBy» generalization had the «ReferenceName» stereotype
applied, then this end also has the «ReferenceName» stereotype applied, with the same value for the
NIEMName attribute.

o The near association end has multiplicity 0..1.

PIM to PSM Mapping
• The NIEM name of a property in a PIM with the «RoleOf» stereotype applied but not the «ReferenceName»

stereotype is determined as follows:

o If the PIM property name beings with “RoleOf”, then the PIM property name shall be the NIEM name.

o Otherwise, the NIEM name shall be the PIM property name prefixed by “RoleOf”.

2.3.3.4 Examples

PIM Representation
Figure 7-6 shows the definition of the two role types Subject and Victim for the base type Person. This structure
allows for a person to be a subject and/or a victim at the same time and for those conditions to change over time.
The same person can be a subject or a victim multiple times (corresponding to the first semantic interpretation of
“role”). Note that this model also allows different people to be the same victim.

Figure 7-6 Representation of role types using role-of properties in a PIM

NIEM-UML Modeling Guide

June 2012 28

Figure 7-7 shows the «RolePlayedBy» representation of an FBI Agent as a role of a person which cooresponds to
the second interpretation of a role. The same person could play this role as well as others at the same time but is only
an FBI Agent once, at any one time.

Figure 7-7 Representation of a role type using a generalization in a PIM

PSM Representation
Figure 7-8 shows the FBI Agent role type shown in Figure 7-7 as represented in the PSM. Note the required naming
of the role-of properties.

Figure 7-8 Representation of a role type in a PSM

XML Schema Representation
The SubjectType and VictimType role types shown in Figure 7-6 are represented in XML Schema as follows:
<xsd:complexType name="subjectType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A data type for a person who is involved or suspected of being
involved in an incident or criminal activity.</xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

NIEM-UML Modeling Guide

June 2012 29

 <xsd:extension base="s:ComplexObjectType">

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="1" ref="nc:RoleOfPersonReference"/>

 <xsd:element maxOccurs="1" minOccurs="1" ref="j:SubjectArmedIndicator"/>

 <xsd:element maxOccurs="1" minOccurs="1" ref="j:SubjectIdentification"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="VictimType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A data type for a person who suffers injury, loss, or death as
a result of an incident.</xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="s:ComplexObjectType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0"

 ref="nc:RoleOfPersonReference"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

2.3.4 Association Types

2.3.4.1 Background
A NIEM association is a specific relationship between NIEM objects. Associations are used when a simple NIEM
property is insufficient to model the relationship clearly and when properties of the relationship exist that are not
attributable to the objects being related. A NIEM association type is a type that establishes a relationship between
objects, along with the properties of that relationship. An association type provides a structure that does not establish
existence of an object but instead specifies relationships between objects. [NIEM-NDR 7.4.3]

2.3.4.2 Representation

Common
A NIEM association is represented as a UML class with the «AssociationType» stereotype applied. The participants
in an association are represented as properties of the «AssociationType» class. All the properties of an association
type representing associated entities must be reference properties, which are represented by UML properties with
aggregation=none (see also Subclause 7.5.1 on Properties).

NOTE. In NIEM, an association type is essentially also an object type. Therefore, an instance of an association type
is a NIEM object.

NIEM-UML Modeling Guide

June 2012 30

PIM
Alternatively, a NIEM association may be represented as a UML association class, which is a model element that is
both an association and a class in UML. The participants in the NIEM association are modeled as the ends of the
association class. The association class may be used as the type of other properties.

An instance of a UML association class always has exactly one object participating in each end of the association.
Thus, an association class models a NIEM association type whose properties all have multiplicity 1..1. A NIEM
association type whose associated objects have multiplicities other than 1..1 cannot be modeled as a UML
association class.

The ends of a UML association class have multiplicity. However, this multiplicity constrains the instantiation of the
association class, not the number of objects that participate in each instance. For example, if an
IncidentVictimAssociation is represented as an association class with multiplicity 0..* on both of its Incident and
Victim association ends, then this means that there may be multiple instances of IncidentVictimAssociation with the
same Incident but different Victims, and there may also be multiple instances with the same Victim but different
Incidents. However, each individual instance of IncidentVictimAssociation is still between exactly one Incident and
one Victim.

NOTE. A NIEM association type is always represented as a class in NIEM-UML, as either a regular class
stereotyped as «AssociationType» or as an association class. It is never represented as a plain UML association.
Instead, a UML association may be used to model a NIEM property (see Subclause 7.5.1).

PSM
An «AssociationType» class represents a NIEM association type that is implemented in XML Schema as a complex
type definition with complex content. The owned attributes of the «AssociationType» class represent the element
references within the complex content or properties of the association type.

2.3.4.3 Mapping Summary

PIM Representation Mapping
• An association type represented as an association class shall be considered equivalent to a class with the

«AssociationType» stereotype applied and a unidirectional UML association corresponding to each end of the
association class, such that:

o The multiplicity of the opposite (navigable) end of the association is 1..1 and its name is the same as the
name of the end of the association class.

o The multiplicity of the near end of the association is the same as the multiplicity of the association class.

PIM to PSM Mapping
• A class in a PIM with the «AssociationType» stereotype applied shall map to a corresponding class in the PSM

with the «AssociationType» stereotype applied.

• If a class in a PIM has the «AssociationType» stereotype applied but not the «ReferenceName» stereotype, then
its NIEM name is determined as follows:

o If the PIM class name ends in “AssociationType”, then the NIEM name shall be the same as the PIM class
name.

o If the PIM class name ends in “Association”, then the NIEM name shall be the PIM class name with
“Type” appended.

o Otherwise, the NIEM name shall be the PIM class name with “AssociationType” appended.

NIEM-UML Modeling Guide

June 2012 31

PSM to XML Schema Mapping
• A class in a PSM with the «AssociationType» stereotype applied shall map to a complex type definition

mapped with complex content and:

o The properties of the class shall map to corresponding element references in the complex content of the
complex type definition mapped from the class.

o If the class is not the specific classifier in a generalization, then the complex type definition mapped from
the class shall be an extension with the base type being s:ComplexObjectType.

2.3.4.4 Example

PIM Representation
Figure 7-9 represents a NIEM association between incidents and victims. Each association is a relationship between
exactly one incident and one victim. Since the properties of the IncidentVictimAssociation association type are
modeled as UML associations, multiplicities may be shown on the near ends of the associations. This explicitly
models that a victim can be a victim in any number of incidents and an incident may have any number of victims.
(More restricted multiplicities may also be used, modeling additional constraints in the PIM, even though these
cannot be carried forward to the PSM – see Subclause 7.5.1.)

Figure 7-9 Representation of a NIEM association type as a UML class

Figure 7-10 represents the same NIEM association between incidents and victims using a UML association class.
(This representation also shows that the suffix “Reference” on the names of reference properties is optional in a
NIEM PIM – see Subclause 7.5.1.) The multiplicities of the association ends that a victim can be a victim in any
number of incidents and an incident may have any number of victims.

NIEM-UML Modeling Guide

June 2012 32

Figure 7-10 Representation of a NIEM association type as a UML association class

PSM Representation
Figure 7-11 shows the PSM representation of the IncidentVictim association type.

Figure 7-11 Representation of a NIEM association type in a NIEM PSM

XML Schema Representation
The IncidentVictim association type is represented in XML Schema as follows:
<xsd:complexType name="IncidentVictimAssociationType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="AssociationType"

 i:namespace="http://niem.gov/niem/niem-core/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A relationship A data type for a relationship between an
incident and a person who is a victim as a result of the incident.</xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="nc:AssociationType">

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="1" ref="nc:IncidentReference"/>

 <xsd:element maxOccurs="1" minOccurs="1" ref="j:VictimReference"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

NIEM-UML Modeling Guide

June 2012 33

 <xsd:element name="VictimReference" nillable="false" type="s:ReferenceType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:ReferenceTarget i:name="VictimType"

 i:namespace="http://niem.gov/niem/domains/jxdm/4.1"/>

 </xsd:appinfo>

 <xsd:documentation>A Details about a person, organization, or other entity who
suffers injury, loss, or death as a result of an incident.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="IncidentReference" nillable="false" type="s:ReferenceType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:ReferenceTarget i:name="IncidentType"

 i:namespace="http://niem.gov/niem/niem-core/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>An occurrence or an event that may require a
response.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

2.3.5 Metadata Types

2.3.5.1 Background
Within NIEM, metadata is defined as “data about data.” This may include information such as the security of a
piece of data or the source of the data. These pieces of metadata may be composed into a metadata type. The types
of data to which metadata may be applied may be constrained. A metadata type describes data about data, that is,
information that is not descriptive of objects and their relationships, but is descriptive of the data itself. It is useful to
provide a general mechanism for data about data. This provides required flexibility to precisely represent
information. [NIEM-NDR 7.4.4]

2.3.5.2 Representation

Common
A metadata type is represented as a UML class with the «MetadataType» stereotype applied. A «MetadataType»
class may be the client of a usage dependency stereotyped as «MetadataApplication» whose supplier is another
class. This models the restriction of the application of the metadata to NIEM objects represented as instances of the
supplier class. A «MetadataType» class with no «MetadataApplication» dependency represents metadata that may
be applied to any NIEM object.

PIM
As for the representation of an object type in a PIM (see Subclause 7.3.2.2), the properties of a «MetadataType»
class may be represented either as attributes of the class or opposite ends of associations in which the class
participates. The modeling of properties is discussed further in Subclause 7.1.

NIEM-UML Modeling Guide

June 2012 34

PSM
A «MetadataType» class represents a NIEM metadata type implemented in XML schema as a complex type
definition with complex content. If the «MetadataType» class is the client of a «MetadataApplication» usage
dependency, this is implemented in XML Schema as application information.

2.3.5.3 Mapping Summary

PIM to PSM Mapping
• A class in a PIM with the «MetadataType» stereotype applied shall map to a corresponding class in the PSM

with the «MetadataType» stereotype applied.

• If a class in a PIM has the «MetadataType» stereotype applied but not the «ReferenceName» stereotype, then its
NIEM name is determined as follows:

o If the PIM class name ends in “MetadataType”, then the NIEM name shall be the same as the PIM class
name.

o If the PIM class name ends in “Metadata”, then the NIEM name shall be the PIM class name with “Type”
appended.

o Otherwise, the NIEM name shall be the PIM class name with “MetadataType” appended.

• A usage dependency in a PIM with the «MetadataApplication» stereotype applied shall map to a corresponding
usage dependency in the PSM with the «MetadataApplication» stereotype applied, with corresponding client
and supplier classes mapped from the PIM.

PSM to XML Schema Mapping
• A class in a PSM with the «MetadataType» stereotype applied shall map to a complex type definition mapped

with complex content and:

o The properties of the class shall map to corresponding property references (XSD attribute uses and element
particles) in the complex content of the complex type definition mapped from the class.

o If the class is not the specific classifier in a generalization, then the complex type definition mapped from
the class shall be an extension with the base type being s:MetadataType.

• If a «MetadataType» class in a PSM is the client of a «MetadataApplication» usage dependency, then the
complex type mapped from the supplier of the dependency shall be referenced in the
xsd:complexType/xsd:annotation/ xsd:appInfo/i:AppliesTo element for the complex type
definition mapped from the «MetadataType» class.

2.3.5.4 Examples

PIM Representation
Figure 7-12 shows a class that represents a metadata type. Since the class has no «MetadataApplication»
dependency, the metadata modeled by the class can be applied to any NIEM object. The only difference in the PSM
would be the stereotypes on property.

Figure 7-12 Representation of a metadata type as a UML class in a PIM

NIEM-UML Modeling Guide

June 2012 35

Figure 7-13 shows a «MetadataType» class with a «MetadataApplication» dependency. In this case the metadata
modeled by the class only applies to NIEM objects that are instances of the type identified by the dependency.

Figure 7-13 Representation of a metadata application constraint as a UML dependency in a PSM or PIM

XML Schema Representation
The MeasureMetadataType modeled in Figure 7-13 is represented in XML Schema as follows:
<xsd:complexType name="MeasureMetadataType">

 <xsd:annotation>

 <xsd:documentation>

 A data type for metadata about a measurement.

 </xsd:documentation>

 <xsd:appinfo>

 <i:Base i:namespace="http://niem.gov/niem/structures/2.0"

 i:name="MetadataType"/>

 <i:AppliesTo i:name="MeasureType"/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="s:MetadataType">

 <xsd:sequence>

 ...

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

2.3.6 Augmentation Types

2.3.6.1 Background
An augmentation type is a complex type that provides a reusable block of data that may be added to object types or
association types. [NIEM-NDR 7.4.5]

2.3.6.2 Representation

Common
An augmentation type is represented as a UML class with the «AugmentationType» stereotype applied.

A UML property with an «AugmentationType» class as its type models an augmentation by the data represented by
the augmentation type. Such an augmentation may be the client of one or more usage dependencies stereotyped as
«AugmentationApplication» whose supplier is an «ObjectType» or «AssociationType» class, known as an
applicable type. This restricts the NIEM objects that may include the augmentation property to instances of the
applicable type. Properties without an «AugmentationApplication» dependency represent augmentations that may be
applied to any NIEM object.

NIEM-UML Modeling Guide

June 2012 36

NOTE. If an augmentation property with an «AugmentationApplication» dependency is included directly in an
«ObjectType» or «AssociationType» class, then the augmented class must be a direct or indirect subclass of the
supplier of the dependency. This is not the case if the augmentation property is in a «PropertyHolder» class,
however (see Subclause 7.5.2). In this case, any class with a property defined by reference to the augmentation
property declaration has a similar subclass restriction.

PIM
An augmentation type is represented as a UML class with the «AugmentationType» stereotype applied or as UML
class owning a generalization marked with the «Augments» stereotype applied.

NOTE. As for the representation of an object type in a PIM (see Subclause 7.3.2.2), the properties of an
«AugmentationType» class may be represented either as attributes of the class or opposite ends of associations in
which the class participates. The modeling of properties is discussed further in Subclause 7.1.

In a PIM, augmentation may also be modeled using a generalization, with the Augmentation class (optionally
stereotyped as «AugmentationType») as the general class and the augmented class as the special class. UML allows
a class to have multiple generalizations. In NIEM-UML, a class must have at most one generalization (excluding
«RolePlayedBy» generalizations) that is not to an «AugmentationType» class; otherwise all generalizations must be
to «AugmentationType» classes. The specialized class is considered to be augmented by data corresponding to the
inherited properties from each of the «AugmentationType» classes.

An augmentation application restriction may also be alternatively represented in a PIM using a generalization with
the «Augments» stereotype applied, where the «AugmentationType» class is the special class and the applicable
type is represented by the general class. An «AugmentationType» class shall have at most one «Augments»
generalization. Typing a property by a class with an «Augments» generalization is equivalent to modeling an
«AugmentationApplication» Usage to the class representing the relevant applicable type.

PSM
An «AugmentationType» class represents a NIEM augmentation type that is implemented in XML Schema as a
complex type definition with complex content.

NOTE. XML Schema does not allow a type to extend more than one other type, so an approach to augmentation
equivalent to using multiple generalizations in UML is not possible. This is why the representation of augmentation
using generalization is not allowed in a NIEM-PSM and why multiple generalization other than as an alternative
notation for augmentation (and roles) is not allowed in a NIEM-PIM.

2.3.6.3 Mapping Summary

PIM Representation Mapping
• A class with one or more generalizations to classes stereotyped «AugmentationType» shall be considered

equivalent to an otherwise identical class with each generalization replaced by a property such that:

o The name of the property is the same as the name of the «AugmentationType» class.

o The type of the property is the «AugmentationType» class.

o The multiplicity of the property is 1..1.

o If the generalization had the «ReferenceName» stereotype applied, then the property has the
«ReferenceName» stereotype applied, with the same value for the NIEMName attribute.

• A class in a PIM with an «Augments» generalization to a class representing an applicable type shall be
considered equivalent to an otherwise identical class without the generalization but with the stereotype
«AugmentationType» applied, such that any property with the class as its type (including properties defined
implicitly per the alternative representation equivalence above) has an «AugmentationApplication» usage to the
applicable type.

NIEM-UML Modeling Guide

June 2012 37

PIM to PSM Mapping
• A class in a PIM with the stereotype «AugmentationType» applied shall map to a corresponding class in the

PSM with the stereotype «AugmentationType» applied.

• If a class in a PIM has the «AugmentationType» stereotype applied but not the «ReferenceName» stereotype,
then its NIEM name is determined as follows:

o If the PIM class name ends in “AugmentationType”, then the NIEM name shall be the same as the PIM
class name.

o If the PIM class name ends in “Augmentation”, then the NIEM name shall be the PIM class name with
“Type” appended.

o Otherwise, the NIEM name shall be the PIM class name with “AugmentationType” appended.

• A usage dependency in a PIM with the stereotype «AugmentationApplication» applied shall map to a
corresponding usage dependency in the PSM with the stereotype «AugmenrationApplication» applied, with
corresponding client and supplier elements mapped from the PIM.

PSM to XML Schema Mapping
• A class in a PSM with the «AugmentationType» stereotype applied shall map to a complex type definition

mapped with complex content and:

o The properties of the class shall map to corresponding property references (XSD attribute uses and element
particles) in the complex content of the complex type definition mapped from the class.

o If the class is not the specific classifier in a generalization, then the complex type definition mapped from
the class shall be an extension with the base type being s:AugmentationType.

• If a property in a PSM is the client of a «AugmentationApplication» usage dependency, then the complex type
mapped from the supplier of the dependency shall be referenced in the xsd:element/xsd:annotation/
xsd:appInfo/i:AppliesTo element for the element declaration mapped from the «MetadataType» class (see
Subclause 7.3.5.2).

2.3.6.4 Examples

PIM Representation
Figure 7-14 shows an augmentation type represented as a UML class with the «AugmentationType» stereotype.

Figure 7-14 Representation of an augmentation type as a UML class in a PIM

Figure 7-15 shows the definition of an augmentation property using the «AugmentationType» class shown in Figure
7-14. It also models that this augmentation is restricted to apply only to instances of the TelephoneNumber class by
using an «AugmentationApplication» dependency (Note that PSM property stereotypes are not shown).

NIEM-UML Modeling Guide

June 2012 38

Figure 7-15 Representation of an augmentation property in a PIM or PSM

Figure 7-16 shows an alternative representation of augmentation by the class shown in Figure 7-14 using
generalization. It also models the general restriction of application of the augmentation type to instances of the
Telephone class by using an «Augments» generalization.

Figure 7-16 Representation of augmentation using generalization in a PIM

XML Schema Representation
The definition of the TelephoneNumberAugmentation type shown in Figure 7-15 is represented in XML schema as
follows:
<xsd:complexType name="TelephoneNumberAugmentationType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="AugmentationType"

 i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>Supplements telephone numbers</xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="s:AugmentationType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0"

 ref="tns:TelephoneCategoryDescriptionText"/>

 </xsd:sequence>

NIEM-UML Modeling Guide

June 2012 39

 </xsd:extension>

 </xsd:complexContent>

 ...

</xsd:complexType>

Its use, with an application restriction, is represented as follows:
<xsd:element name="TelephoneNumberAugmentation" nillable="false"

 substitutionGroup="s:Augmentation" type="tns:TelephoneNumberAugmentationType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:AppliesTo i:name="TelephoneNumberType"

 i:namespace="http://niem.gov/niem/niem-core/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A</xsd:documentation>

 </xsd:annotation>

</xsd:element>

2.3.7 Adapter Types

2.3.7.1 Background
An adapter type is a NIEM object type that adapts external models for use within NIEM. An adapter type creates a
new class of object that embodies a single concept composed of external elements. [NIEM-NDR 7.7]

2.3.7.2 Representation

Common
A NIEM model may reference other external models that are not defined using NIEM-UML. However, reference to
external model elements is restricted to adapter types within NIEM. An adapter type is represented as a UML class
with the «AdapterType» stereotype applied. All properties of such a class shall be defined only in terms of external
model elements. The class shall not be a generalization of any other class. Within a PIM, an «AdapterType» class
may be used in the same way as any other class representing a NIEM complex type.

Unlike any other NIEM type, an «AdapterType» class may have properties with a type that is defined outside of a
«Namespace» package marked with isConformant=true and may have properties which have «Reference»
realizations to elements defined outside of a «Namespace» package marked as isConformant=true.

PIM
As for the representation of an object type in a PIM (see Subclause 7.3.2.2), the properties of an «AdapterType»
class may be represented either as attributes of the class or opposite ends of associations in which the class
participates. The modeling of properties is discussed further in Subclause 7.1.

PSM
An «AdapterType» class represents a NIEM adapter type that is implemented in XML Schema as a complex type
definition with complex content. References to external model elements in the definition of the properties of an
«AdapterType» class are implemented as references to external schema components from the content of the complex
type definition represented by the class.

NOTE. In order for the PSM to be properly mapped to an XML schema, any external model referenced by an
adapter type in the PIM must have a corresponding XML schema representation.

NIEM-UML Modeling Guide

June 2012 40

2.3.7.3 Mapping Summary

PIM to PSM Mapping
• A class in a PIM with the «AdapterType» stereotype applied shall map to a corresponding class in the PSM

with the «AdapterType» stereotype applied.

• If a class in a PIM has the «AdapterType» stereotype applied but not the «ReferenceName» stereotype, then its
NIEM name is determined as follows:

o If the PIM class name ends in “AdapterType”, then the NIEM name shall be the same as the PIM class
name.

o If the PIM class name ends in “Adapter”, then the NIEM name shall be the PIM class name with “Type”
appended.

o Otherwise, the NIEM name shall be the PIM class name with “AdapterType” appended.

PSM to XML Schema Mapping
• A class in a PSM with the «AdapterType» stereotype applied shall be mapped the same way as for an

«ObjectType» class (see Subclause 7.3.2.3), except that the complex type definition mapped from the class has
a xsd:complexType/xsd:annotation/xsd:appInfo/i:ExternalAdapterTypeIndicator element
with value true.

2.3.7.4 Example

PSM Representation
Figure 7-17 shows the PSM representation of the AlertAdapterType class.

Figure 7-17 Representation of an adapter type as a UML class

XML Schema Representation
The AlertAdapterType modeled in Figure 7-17 is represented in XML schema as follows:
<xsd:complexType name="AlertAdapterType">

 <xsd:annotation>

 <xsd:documentation>

 A data type for a simple but general format for exchanging

 effective warning messages based on best practices identified

 in academic research and real-world experience.

 </xsd:documentation>

NIEM-UML Modeling Guide

June 2012 41

 <xsd:appinfo>

 <i:Base i:namespace="http://niem.gov/niem/structures/2.0"

 i:name="Object"/>

 <i:ExternalAdapterTypeIndicator>

 true

 </i:ExternalAdapterTypeIndicator>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="s:ComplexObjectType">

 <xsd:sequence>

 <xsd:element ref="cap:alert"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

2.4 Modeling Simple Types

2.4.1 Simple Types

2.4.1.1 Background
A simple type defines a set of values (its value space) and a set of literals used to denote those. (Adapted from the
definition of datatype in [XMLSchemaDatatypes 2.1].)

2.4.1.2 Representation

Common
A simple type is represented as a UML data type. There are two basic kinds of simple type, represented as primitive
types and code types (Enumerations). Simple types can also be combined in a limited fashion into two kinds of
structures: unions and lists. Table 7-7 summarizes the representation of the various kinds of simple types, as detailed
in subsequent subclauses.

Table 7-7 Simple Type Representation

Simple Type Representation

Primitive Type Primitive Type (See Subclause 7.4.2)

Code Type Enumeration (See Subclause 7.4.3)

Union Data type with «Union» stereotype (See Subclause 7.4.4)

List Data type with «List» stereotype (See Subclause 7.4.5)

A simple type may also be defined as having a value space that is a restriction of the value space of another simple
type. This is represented by a UML data type that is a client of a «Restriction» realization to another UML data type
representing the simple type being restricted. The restricted type may then have the «ValueRestriction» applied, the

NIEM-UML Modeling Guide

June 2012 42

attributes of which may be used to specify various restriction facets (as described in Subclause 8.2.18). Note that not
all facets are applicable to all kinds of simple type.

PIM
Data types representing simple types are generally used in a PIM as the types of properties of classes representing
complex types.

In a PIM, rather than using a «Restriction» realization, a data type that has the «ValueRestriction» stereotype applied
may, equivalently, have a generalization relationship to the UML data type representing the simple type being
restricted. A data type in a PIM that is not stereotyped as a «ValueRestriction» may still be the special type in a
generalization. However, this is actually mapped to the PSM as a complex type. If the general type is a pre-defined
primitive type or a «ValueRestriction» data type, then this complex type has simple content (see Subclause 7.3.2.2),
otherwise it has complex content. Such a specialized data type may not be the general type for any
«ValueRestriction» data type.

Every data type must be documented. If the data type has only one owned comment, that is considered to provide
the required documentation. Otherwise, the data type must have exactly one owned comment with the stereotype
«Documentation» applied that provides the required documentation.

PSM
A data type in a PSM is implemented in XML Schema as a simple type definition. The variety of the simple type
definition may be atomic, union or list, depending on whether the data type represents a primitive type, code type,
union or list.

Generalization is not used with data types in a PSM.

A data type in a PSM that is the client of a «Restriction» realization may also have the
«XSDRepresentationRestriction» stereotype applied. This models the restriction on the representation of the literals
denoting values of the data type in an XML schema. Specifically, the whiteSpace attribute of
«XSDRepresentationRestriction» is implemented as the xsd:whiteSpace element in the simple type definition, with
possible values “collapse”, “preserve” and “replace”.

A data type in a PSM must have an owned comment with the «Documentation» stereotype applied, the body of
which becomes the content of the documentation element in the simple type definition.

2.4.1.3 Mapping Summary

PIM to PSM Mapping
• A data type in a PIM shall map to a corresponding data type in the PSM (except in the case of a primitive type

that is the special type in an generalization – see Subclause 7.4.2.3).

• A data type in a PIM that is the client of a «Restriction» realization shall map to a data type of the same kind in
the PSM, with a «Restriction» realization to the data type mapped from the supplier data type in the PIM.

• A specialized data type in a PIM with the «ValueRestriction» stereotype applied shall map to a data type of the
same kind in the PSM with the «ValueRestriction» stereotype applied, with the same values for the stereotype
attributes, and a «Restriction» realization to the type mapped from the general data type in the PIM.

• A specialized data type in a PIM without the «ValueRestriction» stereotype applied shall map to a class in the
PSM with the «ObjectType» stereotype applied.

o If the general data type in the PIM is itself a specialization that is not a «ValueRestriction», then the
«ObjectType» class shall be the special type in a generalization whose general type is the data type mapped
from the general type in the PIM.

o Otherwise, the «ObjectType» class shall be the client of a realization stereotyped «XSDSimpleContent» for
which the supplier is the type mapped from the general data type in the PIM.

NIEM-UML Modeling Guide

June 2012 43

• If a data type in a PIM has exactly one owned comment, then the corresponding PSM data type shall have an
owned comment with the «Documentation» stereotype applied and the same body as the PIM data type
comment. Otherwise, the PSM data type shall have an owned comment with the «Documentation» stereotype
applied and the same body as the «Documentation» comment owned by the PIM data type. The comment body
is adjusted to conform to NIEM conventions.

PSM to XML Schema Mapping
• A data type in a PSM shall map to a corresponding simple type definition with the xsd:simpleType/@name

given by the data type name.

• If a data type in a PSM is the client of a realization stereotyped as «Restriction», then it shall map to a simple
type definition that is a restriction whose base type is the supplier type of the realization. If the data type has the
«ValueRestriction» stereotype applied, then the attribute values of the stereotype shall map to corresponding
restriction facets.

• If a data type in a PSM has the «XSDRepresentationRestriction» stereotype applied, then the simple type
definition mapped from the data type shall include a xsd:restriction/xsd:whiteSpace element with a value given
by the value of the whiteSpace attribute of the «XSDRepresentationRestriction» stereotype.

• The «Documentation» comment owned by a data type in the PSM shall map to the documentation for the XML
simple type definition mapped from the class, with the body of the comment providing the
xsd:simpleType/xsd:annotation/xsd:documentation for the simple type definition.

2.4.2 Primitive Types

2.4.2.1 Background
A primitive type is a simple type defined in terms of a predefined set of atomic values. An atomic value is an
elementary value, not constructed from simpler values by any user-accessible means defined by this specification.
(Adapted from [XMLSchemaDatatypes].)

2.4.2.2 Representation

Common
The NIEM Primitive Type Library (see Annex C) defines a predefined set of UML primitive types to be used in
NIEM-UML models. To insure integrity and consistency of the type system used at the PIM level with the
generation of NIEM compliant schema, the primitive types in this library are based on XML schema primitive types
[XMLSchemaDatatypes].

A NIEM-UML model may also define new primitive types by specializing the predefined primitive types from the
Primitive Type Library (the NIEM Core model provides a set of such specialized primitive types ready-made – see
Annex C). All primitive types used in a NIEM-UML model shall be either a predefined primitive type from the
Primitive Type Library or a primitive type that is a direct or indirect specialization of a predefined primitive type.

PIM
A specialized UML primitive type in a PIM to which the «ValueRestriction» stereotype is applied defines a new
primitive type. However, a specialized UML primitive type without the stereotype application is actually mapped to
the PSM as a complex type (as specified for data types in general in Subclause 7.4.1.2).

PSM
A primitive type in a PSM (other than a predefined primitive type from the Primitive Type Library) must be the
client in a «Restriction» realization with another primitive type. It is implemented in XML schema as an atomic
simple type definition with a base type given by the type represented by its generalization. If the primitive type has
the «ValueRestriction« stereotype applied, the attributes of the stereotype are implemented as restriction facets.

NIEM-UML Modeling Guide

June 2012 44

2.4.2.3 Mapping Summary

PIM to PSM Mapping
• A reference to a primitive type from the Primitive Type Library in a PIM shall map to a reference to the same

primitive type in the PSM.

• If a primitive type in a PIM does not have the «ReferenceName» stereotype applied, then its NIEM name is
determined as follows:

o If the PIM primitive type name ends in “SimpleType”, then the NIEM name shall be the PIM primitive
type name.

o If the PIM primitive type name ends in “Simple”, then the NIEM name shall be the PIM primitive type
name with “Type” appended.

o Otherwise, the NIEM name shall be the PIM primitive type name with “SimpleType” appended.

PSM to XML Schema Mapping
• A primitive type in a PSM shall map to an atomic simple type definition with a base type given by the simple

type mapped from the supplier type of the «Restriction» realization in which the primitive type is the client
type.

2.4.2.4 Examples

PIM Representation
Figure 7-18 shows a Text primitive type defined as a specialization of the String primitive type from the Primitive
Type Library, which is then further specialized by the ProperNameText type.

Figure 7-18 Representation of primitive types in a PIM

The Text data type in Figure 7-18 is stereotyped as a «ValueRestriction», but it does not have any restriction facets
specified. Figure 7-19 shows an example of a primitive type defined as a «ValueRestriction» with restriction facets.

NIEM-UML Modeling Guide

June 2012 45

Figure 7-19 Representation of a primitive type with a value restriction in a PIM

PSM Representation
Figure 7-20 shows the PSM representation of the primitive types modeled in Figure 7-18. A primitive types in a
PSM must be stereotyped as a «ValueRestriction», so the ProperNameText type becomes an «ObjectType» class in
the PSM.

Figure 7-20 Representation of primitive types in a PSM

Figure 7-21shows the PSM representation of the primitive type shown in Figure 7-19, which uses a «Restriction»
realization instead of a generalization.

Figure 7-21 Representation of a primitive type with a value restriction in a PSM

NIEM-UML Modeling Guide

June 2012 46

XML Schema Representation
The primitive types shown in Figure 7-20 are represented in XML schema as follows:
<xsd:simpleType name="TextSimpleType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A data type for text</xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base=" xsd:string"/>

</xsd:simpleType>

<xsd:complexType name="ProperNameTextSimpleType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A data type for proper name text</xsd:documentation>

 </xsd:annotation>

 <xsd:simpleContent>

 <xsd:extension base="tns:TextSimpleType">

 <xsd:attributeGroup ref="s:SimpleObjectAttributeGroup"/>

 </xsd:extension>

 </xsd:simpleContent>

</xsd:complexType>

The primitive type shown in Figure 7-21 is represented in XML schema as:
<xsd:simpleType name="LongitudeDegreeSimpleType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A data type for longitude degrees</xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:decimal">

 <xsd:minInclusive value="-180"/>

 <xsd:maxExclusive value="180"/>

 </xsd:restriction>

</xsd:simpleType>

2.4.3 Code Types

2.4.3.1 Background
A code type is a simple type that represents a list of values, each of which has a known meaning beyond the text
representation. These values may be meaningful text or may be a string of alphanumeric identifiers that represent
abbreviations for literals. [NIEM-NDR 9.12.3]

NIEM-UML Modeling Guide

June 2012 47

2.4.3.2 Representation

Common
A code type is represented as a UML enumeration. Each code value is one enumeration literal of the enumeration.

The code values are considered to be a restriction of the value space of the base type of the enumeration. The base
type may be explicitly modeled as the supplier of a «Restriction» realization in which the numeration is the client.

PIM
An enumeration in a PIM need not be the client of a «Restriction» realization. By default, the base type of the
enumeration is taken to be the XSD token primitive type.

A specialized enumeration to which the «ValueRestriction» stereotype is applied also defines a new code type as a
restriction of the code type defined by the general enumeration. However, a specialized enumeration without the
stereotype application is actually mapped to the PSM as a complex type (as specified for data types in general in
Subclause 7.4.1.2).

PSM
The base type of an enumeration in a PSM is must be explicitly identified using a «Restriction» realization from the
enumeration to the base type. Such an enumeration represents a NIEM code type that is implemented in XML
schema as atomic simple type definition that is a restriction of the identified base type using multiple
xsd:enumeration facets.

2.4.3.3 Mapping Summary

PIM Representation Mapping
• An enumeration in a PIM that is neither a specialization nor the client of a «Restriction» realization shall be

considered equivalent to an enumeration with a «Restriction» realization to the token primitive type from the
XML Primitive Type Library.

PIM to PSM Mapping
• An enumeration in a PIM shall map to a corresponding enumeration in the PSM, with corresponding

enumeration literals.

• If an enumeration in a PIM does not have the «ReferenceName» stereotype applied, then its NIEM name is
determined as follows:

o If the PIM enumeration name ends in “CodeSimpleType” or “CodeType”, then the NIEM name shall be the
PIM enumeration name.

o If the PIM enumeration name ends in “CodeSimple”, then the NIEM name shall be the PIM enumeration
name with “Type” appended.

o If the PIM enumeration name ends in “Code”, then the NIEM name shall be the PIM enumeration name
with “SimpleType” appended.

o Otherwise, the NIEM name shall be the PIM enumeration name with “CodeSimpleType” appended.

PSM to XML Schema Mapping
• An enumeration in a PSM shall map to an atomic simple type definition. The base type of the simple type

definition is the type mapped from the supplier data type of the «Restriction» realization in which the
enumeration is the client.

NIEM-UML Modeling Guide

June 2012 48

• Each enumeration literal of the enumeration shall map to an enumeration facet of the simple type definition
mapped from the enumeration, whose value is given by the enumeration literal name.

2.4.3.4 Example

PIM Representation
Figure 7-22 shows the definition of the SupervisionLevelCode type as a UML enumeration.

Figure 7-22 A code type represented as a UML enumeration in a PIM

PSM Representation
Figure 7-23 shows the PSM representation of the code type shown in Figure 7-22 , with an explicit «Restriction»
realization to the XSD token primitive type.

Figure 7-23 A code type represented as a restriction in a PSM

XML Schema Representation
The XML Schema representation for the code type shown in Figure 7-23 is:
<xsd:simpleType name="SupervisionLevelCodeSimpleType">

NIEM-UML Modeling Guide

June 2012 49

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A data type for supervision level codes</xsd:documentation>

 </xsd:annotation>

 <xsd:restriction base="xsd:token">

 <xsd:enumeration value="3-HIGH RISK"/>

 <xsd:enumeration value="COMPACT OUT"/>

 <xsd:enumeration value="FUGITIVE"/>

 <xsd:enumeration value="2-MODERATE RISK"/>

 <xsd:enumeration value="4-EXTREME RISK"/>

 <xsd:enumeration value="ISP II"/>

 <xsd:enumeration value="1-LOW RISK"/>

 <xsd:enumeration value="RESID/IN-STATE CUSTD"/>

 <xsd:enumeration value="ISP I"/>

 </xsd:restriction>

</xsd:simpleType>

2.4.4 Unions

2.4.4.1 Background
A union is a simple type whose values are the union of the values of one or more other simple types, which are the
member types of the union. (Adapted from [XMLSchemaDatatypes].)

2.4.4.2 Representation

Common
A union is represented as a UML data type (that is neither a primitive type nor an enumeration) with the stereotype
«Union» applied. The member types of the union are represented as data types that are suppliers of UML usage
dependencies with the union data type as the supplier and the stereotype «UnionOf» applied. A «Union» datatype
shall not have any properties.

A «Union» data type may not be a specialization of another data type. However, a data type with the
«ValueRestriction» stereotype applied may be the specialization of a «Union» type.

PIM
There is no further representation for a PIM.

PSM
A «Union» data type is implemented as a union simple type definition. The member types of the union simple type
definition are the types represented by the UML data types that realize the «Union» data type.

2.4.4.3 Mapping Summary

PIM to PSM Mapping
• A data type in a PIM with the «Union» stereotype applied shall map to a corresponding data type in the PSM

with the «Union» stereotype applied.

NIEM-UML Modeling Guide

June 2012 50

• A usage dependency with the «UnionOf» stereotype applied shall map to a corresponding dependency in the
PSM between corresponding data types mapped from the PIM.

• If a data type in a PIM has the «Union» stereotype applied but not the «ReferenceName» stereotype, then its
NIEM name is determined as follows:

o If the PIM data type name ends in “SimpleType”, then the NIEM name shall be the PIM data type name.

o If the PIM data type name ends in “Simple”, then the NIEM name shall be the PIM data type name with
“Type” appended.

o Otherwise, the NIEM name shall be the PIM data type name with “SimpleType” appended.

PSM to XML Schema Mapping
• A data type in a PSM with the «Union» stereotype applied shall map to a corresponding union simple type

definition.

• For each usage dependency with the «UnionOf» stereotype applied, the type represented by the supplier of the
dependency shall appear in the xsd:union/@xsd:memberTypes list for the simple type definition mapped
from the «Union» type that is the client of the dependency.

2.4.4.4 Example

PIM Representation
Figure 7-24 illustrates a FrictionRidgePositionCode union type from the NIEM biometrics domain. Note that the
code values associated with the code types PlantarPositionCodeSimpleType, FingerPositionCodeSimpleType,
PalmPositionCodeSimpleType, and UnknownPositionCodeSimpleType have been omitted.

Figure 7-24 Representation of a union as a UML data type

PSM Representation
The PSM representation for the types shown in Figure 7-24 is the same as in the PIM except that the names of the
types are proper NIEM names ending in “CodeSimpleType”.

XML Schema Representation
The «Union» data type shown in Figure 7-24 is implemented in XML Schema as follows:
<xsd:simpleType name="FrictionRidgePositionCodeSimpleType">

 <xsd:annotation>

NIEM-UML Modeling Guide

June 2012 51

 <xsd:documentation>

 A data type for a friction ridge image position

 </xsd:documentation>

 <xsd:appinfo>

 <i:Base i:namespace="http://niem.gov/niem/structures/2.0"

 i:name="Object"/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:union memberTypes="biom:FingerPositionCodeSimpleType

 biom:PalmPositionCodeSimpleType biom:PlantarPositionCodeSimpleType

 biom:UnknownPositionCodeSimpleType"/>

</xsd:simpleType>

2.4.5 Lists

2.4.5.1 Background
A list is a simple type having values each of which consists of a finite-length (possibly empty) sequence of atomic
values. The values in a list are drawn from some atomic simple type (or from a union of atomic simple types), which
is the item type of the list. (Adapted from {XMLSchemaDatatypes].)

2.4.5.2 Representation

Common
A list is represented as a UML data type (that is neither a primitive type nor an enumeration) with the stereotype
«List» applied. The data type must have a single property with the multiplicity 0..* and a type that represents the
item type of the list. The name of the property is arbitrary.

The item type of a list is required to be an atomic type, that is, a type whose values are atomic values. Any primitive
type or code list is an atomic type, as is any union of atomic types.

A «List» data type may not be a specialization of another data type. However, a data type with the
«ValueRestriction» stereotype applied may be the specialization of a «List» type.

PIM
There is no further representation for a PIM.

PSM
A «List» data type is implemented as a list simple type definition. The item type of the list simple type definition is
the type represented by the type of the single property of the «List» data type.

If the «List» data type is the special type in a generalization, then the type represented by the general type in that
generalization is the base type of the simple type definition for the «Union» data type. If the generalization is not
stereotyped, then simple type definition is an extension. If the generalization is stereotyped as a «ValueRestriction»,
then the simple type definition is a restriction and the attribute values of the «ValueRestriction» stereotype are
implemented as restriction facets.

NIEM-UML Modeling Guide

June 2012 52

2.4.5.3 Mapping Summary

PIM to PSM Mapping
• A data type in a PIM with the «List» stereotype applied shall map to a corresponding data type in the PSM with

the «List» stereotype applied, with a corresponding property mapped from the single property of the data type in
the PIM.

• If a data type in a PIM has the «List» stereotype applied but not the «ReferenceName» stereotype, then its
NIEM name is determined as follows:

o If the PIM data type name ends in “SimpleType”, then the NIEM name shall be the PIM data type name.

o If the PIM data type name ends in “Simple”, then the NIEM name shall be the PIM data type name with
“Type” appended.

o Otherwise, the NIEM name shall be the PIM data type name with “SimpleType” appended.

PSM to XML Schema Mapping
• A data type in a PSM with the «List» stereotype applied shall map to a corresponding list simple type definition,

with an item type given by the simple type mapped from the type of the single required property of the «List»
data type.

2.4.5.4 Example

PIM Representation
Figure 7-25 shows the PIM representation of a simple type that is a list of Boolean values. Note that the required
property of the «List» data type is represented using an association (see also Section 7.5.1.2)

Figure 7-25 Representation of a list in a PIM

PSM Representation
Figure 7-26 shows the PSM representation of the «List» data type shown in Figure 7-25. Note that, in the PSM, the
required property of the «List» data type is represented as an attribute.

Figure 7-26 Representation of a list in a PSM

XML Schema Representation
The «List» data type shown in Figure 7-26 is implemented in XML Schema as follows:
<xsd:simpleType name="BooleanListSimpleType">

 <xsd:annotation>

 <xsd:documentation>

 A data type for a white space-delimited list of boolean.

NIEM-UML Modeling Guide

June 2012 53

 </xsd:documentation>

 <xsd:appinfo>

 <i:Base i:namespace="http://niem.gov/niem/structures/2.0"

 i:name="Object"/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:list itemType="xsd:boolean"/>

</xsd:simpleType>

2.5 Modeling Properties

2.5.1 Properties

2.5.1.1 Background
A property relates a NIEM object (the subject) to another object or to a value (the object). Property data describes an
object as having a characteristic with a specific value or a particular relationship to another object. [NIEM-NDR 3.2]

2.5.1.2 Representation

Common
A NIEM property is represented as a UML property. The owner of the UML property specifies the type of the
subject of the NIEM property, while the type of the UML property itself specifies the type of the object of the NIEM
property.

A UML property with aggregation=none represents a NIEM reference property while a UML property with
aggregation=shared or composite represents a NIEM content property. NIEM does not recognize any semantic
difference between reference and content properties [NDR 7.6.2] (though their XML Schema representation may
differ). A UML property with aggregation=composite, however, carries an additional semantic constraint that any
instance may be the value of at most one composite property at any point in time [UML 7.3.3].

PIM
A property may optionally be represented as the end of a UML association. An association end representing a NIEM
property is always navigable (since classifier-owned association ends are always navigable in UML). The subject
type of the NIEM property is represented by the classifier at the opposite end of the association. A UML association
used to represent a NIEM property (or two NIEM properties) may not be an association class.

NOTE. An ordinary UML association does not represent a NIEM association type. See Subclause 7.3.4 on the
representation of NIEM association types.

While a unidirectional association (i.e., one navigable at only one end) only defines a single NIEM property, UML
still provides the ability to model an arbitrary multiplicity on the non-navigable end of the association. This
represents an additional constraint on how many instances of the subject type may participate in the NIEM property.
This constraint can only be modeled in a NIEM PIM using the UML association notation for a NIEM property.

A bidirectional association (i.e., one navigable at both ends) represents two NIEM properties, corresponding to each
end, in which the object type of each property is the subject type of the other.

PSM
In a PSM, each UML property owned by a class must may have either the «XSDProperty» or the
«XSDAnyProperty» stereotype applied. A property with neither applied is treated as if «XSDProperty» was applied
with default values for its attributes.

NIEM-UML Modeling Guide

June 2012 54

An «XSDProperty» property represents a NIEM property, which is implemented in XML Schema as either an
attribute declaration and use or an element declaration and particle. If the «XSDProperty» attribute kind has the
value “attribute”, then the property is implemented as an XML Schema attribute. If the value of kind is “element”,
then the property is implemented as an XML Schema element.

If an «XSDProperty» property has kind=attribute, then its multiplicity must be 1..1, its aggregation must not be none
and its type must be a data type representing a simple type.

If an «XSDProperty» has kind=element, the multiplicity lower bound for the property gives the value of minOccurs
for the implemented element particle and the multiplicity upper bound for the property gives the value of
maxOccurs. The type of the property must not be empty unless the property is a derived union (a UML property
without a type that is a derived union represents an abstract property – see Subclause 7.5.3). The nillable attribute of
the «XSDProperty» stereotype may be used to indicate that the element particle is nillable.

The fixed attribute of the «XSDProperty» stereotype may be used to indicate that the attribute use or element
particle must have a certain fixed value.

There are significant differences between the UML representation and XML Schema implementation of a NIEM
property. Sections 6.1.6.2 and 6.1.6.3 of [NIEM-NDR], Rule 6-14 and Rule 6-15, require that an attribute or element
declaration be a top-level declaration; however, Section 7.3.44 of [UML] requires that a Property be the
ownedAttribute of a Classifier. Thus in the UML representation, only one Classifier may reference a Property, while
in the XML Schema implementation, more than one type definition may reference the same attribute or element
declaration.

To resolve this difference, more than one «XSDProperty» property with the same name contained (directly or
indirectly) within the same «Namespace» package (see Subclause 7.2.1) shall have the same attribute or element
declaration (and so must all have the same value for kind). All use of the attribute uses or element particles mapped
from such properties reference the same attribute or element declaration.

Alternatively, a property declaration may be explicitly modeled separately from property use using a
«PropertyHolder» class. This is discussed further in Subclause 7.5.2.

An «XSDAnyProperty» property represents the use of a property that may hold a value of any type, which is
implemented in XSD Schema as an xsd:any particle. Such a property may not have a type, but also must be a
derived union (a UML property without a type that is a derived union represents an abstract property – see
Subclause 7.5.3). The multiplicity lower and upper bounds of an «XSDAnyProperty» property give the minOccurs
and maxOccurs values, respectively, for the xsd:any particle. If provided, the processContents and valueNamespace
attributes of the «XSDAnyProperty» stereotype give the processContents and namespace values for the
xsd:any particle.

A «SequenceID» property is mapped to a NIEM structures:sequenceId attribute (see [NIEM-NDR 7.6.1]).
Such a property must have the name “sequenceId”, the type “integer” and a multiplicity of 1..1.

2.5.1.3 Mapping Summary

PIM Representation Mapping
• A property owned by an association shall be considered equivalent to a property owned by the associated class.

• A UML property that is an association end shall be considered to an otherwise identical UML property that is
not an association end.

PIM to PSM Mapping
• A property in a PIM shall map to a corresponding property in the PSM with the same multiplicity and

aggregation as the PIM property and with an owner and type (if any) that are the corresponding classifiers
mapped from the PIM.

NIEM-UML Modeling Guide

June 2012 55

• If a property in a PIM has a type, is owned by a class and is the client of a «References» realization or is marked
as a derived union, then the corresponding property in the PSM shall have the «XSDProperty» stereotype
applied.

• If a property in a PIM has no type, is owned by a class, but is not marked as a derived union, then the
corresponding property in the PSM shall have the «XSDAnyProperty» stereotype applied.

• If a property in a PIM owned by a class does not have the stereotype «ReferenceName» applied and is not the
client of a «References» realization, then its NIEM name is determined as follows:

o If the PIM property has aggregation=none and the property name does not end in “Reference”, then the
NIEM name shall be the PIM property name with “Reference” appended.

o Otherwise, the NIEM name shall be the PIM property name.

PSM to XML Schema Mapping
• A property in a PSM with the «XSDProperty» stereotype applied and kind=element, or with no stereotype

applied, shall map to XML schema as follows:

o Unless it is the client of a «References» realization whose supplier is in a «Namespace» package with a
different target namespace, it shall map to a corresponding element declaration with a name given by the
property name. All «XSDProperty» properties with the same name contained within the same
«Namespace» package shall map to a single such element declaration.

 If the property has aggregation = none and has a class as its type, then the element declaration shall be
for a reference to the complex type mapped from the type of the property. Otherwise, the element
declaration shall have the simple or complex type mapped from the type of the property.

o If the property is owned by a class that does not have the «PropertyHolder» stereotype applied, then it shall
also map to an element particle within the complex content of the complex type mapped from the owning
class, with an ref to the element declaration mapped per the above, nillable given by the value of the
nillable attribute of the «XSDProperty» stereotype and property multiplicity mapped to minOccurs and
maxOccurs. If a value is provided for the fixed attribute of the «XSDProperty» stereotype, then the
element particle contains a fixed attribute with that value.

• A property in a PSM with the «XSDProperty» stereotype applied and kind=attribute shall map to XML schema
as follows:

o Unless it is the client of a «References» realization whose supplier is in a «Namespace» package with a
different target namespace, it shall map to a corresponding attribute declaration with the
xsd:attribute/@name given by .the property name and the xsd:attribute/@type given by the
corresponding simple type mapped from the property type. All «XSDProperty» properties with the same
name contained within the same «Namespace» package shall map to a single such attribute declaration.

o If it is owned by a class that does not have the «PropertyHolder» stereotype applied, then it shall also map
to an attribute use within the complex content of the complex type mapped from the owning class, with an
xsd:attribute/@ref to the attribute declaration mapped per the above. If a value is provided for the
fixed attribute of the «XSDProperty» stereotype, then the attribute use contains a fixed attribute with that
value.

• If an «XSDProperty» property has an owned comment with the stereotype «Documentation» applied, then the
body of this comment is used for the documentation annotation of the attribute or element declaration mapped
from the property.

• A property in a PSM with the «XSDAnyProperty» stereotype applied shall map to an xsd:any particle within
the complex content of the complex type mapped from the owning class of the property, with the property name
mapped to name, multiplicity mapped to minOccurs and maxOccurs, the processContent attribute of the
«XSDAnyProperty» stereotype mapped to processContent and the valueNamespace attribute mapped to
namespace.

NIEM-UML Modeling Guide

June 2012 56

• A property in a PSM with the «SequenceID» stereotype applied small map to an attribute use with an
xsd:attribute/@ref to the NIEM structures:sequenceID attribute declaration.

2.5.1.4 Example

PIM Representation
Figure 7-27 shows a set of three NIEM properties represented as attributes of a Person class. The complex type
represented by this class is thus also modeled as being the subject of these properties.

Figure 7-27 Representation of NIEM properties as UML properties in a PIM

Figure 7-28 shows an example the alternative representation of a NIEM property as an association end.

Figure 7-28 Representation of a NIEM property as a UML association end

PSM Representation
Figure 7-29 shows the PSM representation of the class modeled in Figure 7-27, with the «XSDProperty» stereotype
applied to all properties.

Figure 7-29 Representation of NIEM properties as UML properties in a PSM

XML Schema Representation
The class shown in Figure 7-29 is represented in XML schema as follows:
<xsd:complexType name="PersonType">

 <xsd:annotation>

 <xsd:documentation>A data type for a human being.</xsd:documentation>

 <xsd:appinfo>

 <i:Base i:name="Object"

 i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexContent>

NIEM-UML Modeling Guide

June 2012 57

 <xsd:extension base="s:ComplexObjectType">

 <xsd:sequence>

 <xsd:element maxOccurs="1" minOccurs="1" ref="nc:PersonBirthDate"/>

 <xsd:element maxOccurs="1" minOccurs="1" ref="nc:PersonName"/>

 <xsd:element maxOccurs="1" minOccurs="1"

 ref="nc:PersonSSNIdentification"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

<xsd:element abstract="false" name="PersonName" nillable="false"

 type="nc:PersonNameType">

 <xsd:annotation>

 <xsd:documentation>A combination of names and/or titles by which a person is
known.</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

<xsd:element abstract="false" name="PersonBirthDate" nillable="false"

 type="nc:DateType">

 <xsd:annotation>

 <xsd:documentation>A date a person was born.</xsd:documentation>

 </xsd:annotation>

</xsd:element>

<xsd:element abstract="false" name="PersonSSNIdentification" nillable="false"

 type="nc:IdentificationType"/>

2.5.2 Property Holders and Property References

2.5.2.1 Background
A property declaration is the association of the name of a property with the type (object) of the property. A property
reference is the association of a property declaration with a particular type of subject for the property.

A UML property owned by a class representing a complex type specifies both the subject and object types for the
represented NIEM property. A NIEM property may also be declared independently of the definition of any complex
type. Such a global property declaration defines the object type of the property but does not restrict its use to a
specific type of subject.

2.5.2.2 Representation

Common
Since a UML property cannot be defined outside of a classifier, a global property declaration is still represented as a
UML property owned by a class, but that class has the «PropertyHolder» stereotype applied, indicating that its
purpose is simply to hold the representations of global property declarations.

The use of a property in the context of a complex type may also be defined by reference to a property declaration
outside of the definition of the complex type. Such a property reference is represented by a UML realization with the
stereotype «References» applied, between two UML properties owned by different classes. A specific property
declaration may be referenced at most once within the context of any one complex type.

NIEM-UML Modeling Guide

June 2012 58

The client UML property of a «References» realization represents the use, in the context of the complex type
represented by the owning class of the property, of the NIEM property declared by the supplier UML property of the
realization. The client UML property of the realization must have the same type (or a subclass) as the supplier
property and a multiplicity that is consistent with the multiplicity of the supplier property. Multiple properties may
be defined by reference to the same property declaration.

A UML property owned by a class representing a complex type that is not the client of a «References» realization
actually represents both the declaration of a NIEM property and the use of that property in the context of the
complex type. Therefore, such a UML property may also be the supplier of «References» realizations, in which case
the reference is to the implicit property declaration represented by the UML property.

Since all property declarations in NIEM, whether represented explicitly or implicitly in UML, are considered to be
“top level”, the NIEM names of all UML properties representing such declarations within a single NIEM namespace
must have distinct NIEM names (see also Subclause 7.2.1). However, a UML property that is the client of a
«References» realization does not represent a property declaration and thus has the same NIEM name as the supplier
of the realization.

PIM
It is often the case that more than one property in a class representing a complex type will be defined by reference to
property declarations represented by UML properties with the same owner (for example, a «PropertyHolder» class
modeling a set of top-level declarations in a namespace). As a convenience notation for this case, a «References»
realization may be used between the two classes, rather than using multiple realizations between pairs of properties.
When one class has a «Reference» realization to another, any UML property in the client class with the same NIEM
name as a UML property in the supplier class is considered to be implicitly defined by reference to the property
declaration represented by the matching UML property.

Likewise, a «References» realization may be used between packages. This will result in all classes within those
packages having «References» realizations based on matching NIEM names (see Subclause 7.6.1).

PSM
A property declaration represented in a PSM may not have the «XSDAnyProperty» stereotype applied. It is
implemented as either an attribute or element declaration, depending on the value of the kind attribute of the
«XSDProperty» stereotype (or as an element, if no stereotype is applied). A property reference is implemented as an
attribute use or element particle referencing the corresponding declaration. If the UML property representing the
property declaration is contained in a different «Namespace» package than the UML property representing the
property reference, then the implementation of the property reference will refer to a declaration in a different
schema.

The «XSDDeclaration» stereotype is a specialization of «References» that may be used in a PSM to denote
explicitly that a realization so stereotyped identifies the property declaration referenced by a specific property use.
An «XSDProperty» realization must always be between one property and another property or between a property
and a «Namespace» package. In the later case, the target namespace of the «Namespace» package is used as the
namespace for the property declaration, while the property name is taken from the UML property representing the
property use.

2.5.2.3 Mapping Summary

PIM Representation Mapping
• A realization between two packages in a PIM with the stereotype «References» applied shall be considered

equivalent to replacing the realization between the packages with multiple «References» realizations between
classes with those packages, such that:

o If a class in the client package of the original realization has the same NIEM name as a class of the supplier
package, then there is a realization from the class in the client class to the class in the supplier package.

NIEM-UML Modeling Guide

June 2012 59

• A realization between two classes in a PIM with the stereotype «References» applied shall be considered
equivalent to replacing the realization between the classes with multiple «References» realizations between
properties of the classes, such that:

o If a property in the client class of the original realization has the same NIEM name as a property of the
supplier class, then there is a realization from the property in the client class to the property in the supplier
class.

PIM to PSM Mapping
• A class in a PIM with the «PropertyHolder» stereotype applied shall map to a corresponding class in the PSM

with «PropertyHolder» stereotype applied.

• A realization between two properties in a PIM with the stereotype «References» applied shall map to a
corresponding realization in the PSM with the «References» stereotype applied, between corresponding
properties mapped from the PIM.

• A property in a PIM that is the client of a «References» realization with another property as the supplier has the
same NIEM name as the supplier property.

PSM to XML Schema Mapping
• A property in a PSM that is owned by a class with the «PropertyHolder» shall be mapped as an attribute or

element declaration, as described in Subclause 7.5.1.4. The «PropertyHolder» class will have no representation
in the XSD.

• A property in a PSM that is the client of a «References» or «XSDDeclaration» realization whose supplier has a
different target namespace shall be mapped as an attribute use or element particle, as described in Subclause
7.5.1.4, but shall not be mapped as an attribute or element declaration. The attribute use or element particle shall
have its ref attribute set to the attribute or element declaration mapped from the supplier of the realization.

2.5.2.4 Example

PIM Representation
Figure 7-30 shows two properties of the Payload class being defined by reference to properties of the same name
defined in NIEM Core. The OrganizationAssociation and OrganizationContactInformationAssociation property
declarations are modeled as properties of «PropertyHolder» classes, independently of their use in the definition of
Payload or any other complex type. (This representation may also be used in a PSM.)

Figure 7-30 Representation of property references using «References» realizations

NIEM-UML Modeling Guide

June 2012 60

Figure 7-31 shows an alternative representation of the model shown in Figure 7-30, using a single «Reference»
realization between the two classes. Since both of the properties OrganizationAssociation and
OrganizationContactInformationAssociation in the Payload match the names of properties of the referenced
«PropertyHolder» class, these are both considered to be defined by reference. However, the properties Resource,
ContactInformation and Agency are defined in the context of their use in the Payload class.

Figure 7-31 Alternative representation using «References» realizations between classes

XML Schema Representation
The property references modeled in Figure 7-30 are represented in XML Schema as follows:
<xsd:complexType name="PayloadType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A data type for</xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="s:ComplexObjectType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0"

 ref="tns:Resource"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0"

 ref="tns:ContactInformation"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0"

 ref="tns:Agency"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0"

 ref="nc:OrganizationContactInformationAssociation"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0"

 ref="nc:OrganizationItemAssociation"/>

 </xsd:sequence>

NIEM-UML Modeling Guide

June 2012 61

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

2.5.3 Substitution Groups

2.5.3.1 Background
One property is potentially substitutable for another if either the first property has no type or the type of the second
property is a direct or indirect generalization of the type of the first property. The substitution group for a property
known as the head is the set of all properties that are substitutable for it within a certain context. (Adapted from
[XMLSchemaStructures 3.3.6.4].)

An abstract property is one that cannot be assigned a value itself but can only take values as determined by
properties in its substitution group. (Adapted from [XMLSchemaStructures 3.3.1].)

2.5.3.2 Representation

Common
Any UML property owned by a class may represent the head of a substitution group. The context of the substitution
group is the «Namespace» package (see Subclause 7.2.1) that directly or indirectly contains the owning class of the
head property. Members of the substation group are represented as UML “subset” properties of the head.

A UML property models a member of a substitution group if it is declared to have the head property as a subsetted
property. The well-formedness rules of UML require that a subsetting property be owned either in the same class or
a direct or indirect subclass of any subsetted property (see [UML 7.3.45]). However, a «PropertyHolder» class may
be used to define substitution group properties independently of any complex type definition (see Subclause 7.5.2).

An abstract property is represented by a UML property that is marked as a derived union. In this case, the collection
of values of the property in the context of its substitution group is derived as the strict union of the values of the
subsetting properties in that group (see [UML 7.3.45]). If a UML property with no type is used to represent a head
property, then it must be marked as a derived union.

PIM
There is no further representation for a PIM.

PSM
A UML property in a PSM that subsets another property must not have the stereotype «XSDProperty» applied with
kind=attribute or have the «XSDAnyPropertyt» stereotype applied. It may not subset another an
«XSDAnyProperty»..

A UML property in a PSM that is a derived union must have the «XSDProperty» applied with kind=element.

A UML Property that subsets another property will be a member of the substitution group for that property.

2.5.3.3 Mapping Summary

PIM to PSM Mapping
• A property in a PIM that has subsetted properties shall map to a corresponding property in the PSM that subsets

the corresponding properties mapped from the subsetted properties in the PIM.

• A property in a PIM that is a derived union shall map to a corresponding property in the PSM that is a derived
union.

NIEM-UML Modeling Guide

June 2012 62

PSM to XML Schema Mapping
• A property in a PSM that subsets another property maps to an element declaration with a substitutionGroup

reference to the element declaration mapped from the subsetted property.

• A property in a PSM that is a derived union maps to an element declaration with an abstract value of true.

2.5.3.4 Examples

PIM Representation
Figure 7-32 shows an example of a substitution group defined in a «PropertyHolder» class as a set of properties that
subset the head property ContactMeans. Since ContactMeans is a derived union, it represents an abstract property.
The ContactMeans property of the ContactInformation «ObjectType» class is defined by reference to the head
property ContactMeans, meaning that any of the properties in the substitution group for ContactMeans is
substitutable for ContactMeans in ContactInformation.

Figure 7-32 Representation of a substitution group using UML subsetted properties in a PIM

Figure 7-33 shows how a substitution group defined in one NIEM namespace may be extended in another
namespace. The generalization between ExtendedContactMeansSubstituionGroup and
ContactMeansSubstitutionGroup is required in order to establish a subsetting context that allows ContactSkypeID to
subset the ContactMeans head property declared in ContactMeansSubstitution Group.

Figure 7-33 Extending a substitution group in a PIM or PSM

XML Schema Representation
The substitution group modeled in Figure 7-32 is represented in XML schema as follows:
<xsd:element abstract="true" name="ContactMeans" nillable="false"/>

NIEM-UML Modeling Guide

June 2012 63

 <xsd:element name="ContactWebsiteURI" nillable="true"

 substitutionGroup="nc:ContactMeans" type="niem-xsd:anyURI">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="ContactMeans"

 i:namespace="http://niem.gov/niem/niem-core/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ContactTelephoneNumber" nillable="true"

 substitutionGroup="nc:ContactMeans" type="nc:TelephoneNumberType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="ContactMeans"

 i:namespace="http://niem.gov/niem/niem-core/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:element name="ContactEmailID" nillable="true"

 substitutionGroup="nc:ContactMeans" type="niem-xsd:string">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="ContactMeans"

 i:namespace="http://niem.gov/niem/niem-core/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A</xsd:documentation>

 </xsd:annotation>

 </xsd:element>

 <xsd:complexType name="ContactInformationType">

 <xsd:annotation>

 <xsd:appinfo>

 <i:Base i:name="Object" i:namespace="http://niem.gov/niem/structures/2.0"/>

 </xsd:appinfo>

 <xsd:documentation>A data type for</xsd:documentation>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="s:ComplexObjectType">

 <xsd:sequence>

 <xsd:element maxOccurs="unbounded" minOccurs="0" ref="nc:ContactMeans"/>

 <xsd:element maxOccurs="unbounded" minOccurs="0" ref="nc:ContactEntity"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

 </xsd:complexType>

NIEM-UML Modeling Guide

June 2012 64

2.5.4 Choice Groups

2.5.4.1 Background
A choice group is a group of properties of a complex type such that exactly one of them may have a value in any
instance of the complex type. (Adapted from [XMLSchemaStructures 3.8.1].)

2.5.4.2 Representation

Common
A choice group is represented as a UML class with the stereotype «Choice» applied, whose owned properties are the
members of the group. A «Choice» class must have at least one property, and all the properties of the class must be
optional (i.e., have multiplicity lower bound 0). The inclusion of the choice group in a complex type is represented
by a normal UML property owned by the class representing the complex type and having the «Choice» class as its
type.

PIM
There is no further PIM representation.

PSM
A class in a PSM with the stereotype «Choice» applied is implemented in XML schema as an xsd:choice model
group in each complex type corresponding to a class with a property that uses the «Choice» class as its type. All the
properties of a «Choice» class must represent XSD elements.

2.5.4.3 Mapping Summary

PIM to PSM Mapping
• A class in the PIM with the stereotype «Choice» applied maps to a corresponding class in the PSM with the

stereotype «Choice» applied.

PSM to XML Schema Mapping
• A property in a PSM with a «Choice» class as its type maps to an xsd:choice model group. The property

multiplicity gives the occurrence bounds for the group. The properties of the «Choice» class map as properties
(see Subclause 7.5.1) to members of the model group. (Note that the «Choice» class does not itself map to a
type in the XML schema.)

2.5.4.4 Example

PIM Representation
Figure 7-34 shows an example of a choice group in which only one of Date or DateTime may have a value. The
property DateChoice models the inclusion of the choice group in the complex type represented by the DateType.
Note that the names of the «Choice» class and the property that uses it are arbitrary. (The representation in a PSM is
similar.)

NIEM-UML Modeling Guide

June 2012 65

Figure 7-34 Representation of a choice group

XML Schema Representation
The choice group modeled in Figure 7-34 is represented in XML schema as follows:
<xsd:complexType name="DateType">

 <xsd:annotation>

 <xsd:documentation>A data type for a calendar date.</xsd:documentation>

 <xsd:appinfo>

 <i:Base i:namespace="http://niem.gov/niem/structures/2.0"

 i:name="Object"/>

 </xsd:appinfo>

 </xsd:annotation>

 <xsd:complexContent>

 <xsd:extension base="s:ComplexObjectType">

 <xsd:sequence>

 <xsd:choice>

 <xsd:element ref="nc:Date" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="nc:DateTime" minOccurs="0" maxOccurs="1"/>

 </xsd:choice>

 <xsd:element ref="nc:DateAccuracyCode" minOccurs="0" maxOccurs="1"/>

 <xsd:element ref="nc:MarginDuration" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:extension>

 </xsd:complexContent>

</xsd:complexType>

2.6 Packaging Models

2.6.1 Reference and Subset Models

2.6.1.1 Background
A central aspect of NIEM is the use of a reference model of business vocabularies as the basis for defining standard
information exchange messages, transactions, and documents on a large scale: across multiple communities of
interest and lines of business. This reference vocabulary includes both a common core and domain-specific updates.

A reference model is a model that provides:

• The broadest, most fundamental definitions of components in its namespace.

• The authoritative definition of business semantics for components in its namespace.

A subset model is a model with the same target namespace as a reference model that:

• Provides an alternate representation of components that are defined by a reference schema.

NIEM-UML Modeling Guide

June 2012 66

• Does not alter the business semantics of components in its namespace from those defined in the reference
model.

(Adapted from [NDR 2.2, 2.3].)

2.6.1.2 Representation

Common
Currently, the reusable components of the NIEM reference vocabulary are rendered as XML schema. The NIEM
Reference Model Library (see Annex C) provides a NIEM-UML model of all these reference schema. Each NIEM
core and domain reference namespace is modeled as a package within the Reference Model Library.

Having the Reference Model Library available means that a NIEM PIM may reference properties declared in a
reference namespace (see Subclause 7.5.2), in order to subset the Reference Model for a specific purpose. Such a
subset model is required to have the same target namespace URI as some namespace in the Reference Model.
Further, the subset model may only declare types and properties that correspond to those already defined for that
namespace in the Reference Model, though, as the name indicates, it will only include a subset of what is in the
Reference Model. This means that a subset model is not allowed to introduce new content, nor is it allowed to
extend the data content defined by a component of the Reference Model.

PIM
A subset model may be represented as a «Namespace» package with the appropriate reference namespace as its
target namespace. All NIEM types represented in a subset model must have the same NIEM name as some
corresponding type represented in the Reference Model and all NIEM properties in a subset model must be defined
by reference to property declarations represented in the Reference Model.

A subset model can be straightforwardly represented using the convenience notation defined in Subclause 7.5.2 to
model a «References» realization from each class in the subset model to the corresponding class with the same
NIEM name in the Reference Model. Since all the properties in a class in a subset model must have the same NIEM
names as corresponding properties in the reference class, having a class-level realization implies that all the
properties in the subset class are defined by reference.

As a further convenience, a «References» realization may be used between two «Namespace» packages. In this case,
any UML class in the client package with the same NIEM name as a UML class in the supplier package is
considered to have an implicit «References» realization to the matching class in the supplier package. In addition,
any use in the subset package of an element (e.g., classifier or property) from the reference package is considered to
instead refer to a similarly named element included in the subset package. In particular, the use of a property
declaration from the reference package as the supplier of a «References» realization from an element of the subset
package results in the reference actually being to a corresponding property declaration in the subset package.

Moreover, if the «InformationModel» stereotype is used (see Subclause 7.2.1), then subset and reference packages
can be explicitly identified as having those default purposes. If a subset «InformationModel» package has a
«References» realization to a reference «InformationModel» package, then the subset package must have the same
target namespace as the reference package.

PSM
In a PSM, a subset model is represented as a «Namespace» package with the same target namespace as a reference
schema. All classifiers and properties in the subset model must have the same names as corresponding elements in
the reference model. Note that «References» realizations to the reference model elements are not used for subset
modeling in a PSM – all relevant reference model elements are copied in the subset model.

NIEM-UML Modeling Guide

June 2012 67

2.6.1.3 Mapping Summary

PIM Representation Mapping
• A realization between two «Namespace» packages in a PIM with the stereotype «References» applied shall be

considered equivalent to replacing the realization between the packages with multiple «References» realizations
between classes contained (directly or indirectly) in the packages, such that:

o If a class in the client package of the original realization has the same NIEM name as a class in the supplier
package, then there is a realization from the class in the client package to the class in the supplier package.

• The use of a classifier in «Namespace» package in a PIM that is from another «Namespace» package with the
same target namespace as the first shall be considered to be equivalent to replacing the classifier from the
second package with a classifier from the first package with the same NIEM name. If no such classifier exists in
the first package, one is created.

• A «References» realization in a PIM between two properties in different «Namespace» packages with the same
target namespace is considered equivalent to replacing the realization with one having the same client but a
supplier from the first package with the same NIEM name as the original supplier. If no such supplier exists in
the first package, one is created. If a class already exists with the same NIEM name as the owning class of the
original property, then the newly created property is added to that class. Otherwise, a new class is created with
the appropriate name to hold the property.

2.6.1.4 Example
Figure 7-35 shows an example of a small subset model with two classes with properties defined by reference to
classes in the Reference Model. Figure 7-36 shows an alternative representation of the same model using a
«References» realization between the two packages.

Figure 7-35 Representation of a subset model using «References» realizations

NIEM-UML Modeling Guide

June 2012 68

Figure 7-36 Alternative Representation using «References» realizations between packages

2.6.2 Model Package Descriptions

2.6.2.1 Background
A Model Package Description (MPD) is a compressed archive of files that contains one and only one of the five
classes of NIEM IEM, as well as supporting documentation and other artifacts. An MPD is self-documenting and
provides sufficient normative and non-normative information to allow technical personnel to understand how to use
and/or implement the IEM it contains. [NIEM-MPD 1.1]

An Information Exchange Model (IEM) is one or more NIEM-conforming XML schemas that together specify the
structure, semantics, and relationships of XML objects. These objects are consistent XML representations of
information. Currently, five IEM classes exist in NIEM: (1) numbered release, (2) domain update, (3) core update,
(4) Information Exchange Package Documentation (IEPD), and (5) Enterprise Information Exchange Model
(EIEM).

NIEM-UML Modeling Guide

June 2012 69

The primary type of MPD supported by this specification is the IEPD, which is an MPD that contains NIEM-
conforming schemas that define one or more recurring XML data exchanges.

2.6.2.2 Representation

Common
A MPD is represented as a UML component with the «ModelPackageDescription» stereotype applied. The attributes
of the stereotype can be used to set the various properties of the MPD.

Artifacts are modeled as being included in an MPD using a UML usage dependency stereotyped as
«ModelPackageDescriptionFile» from the «ModelPackageDescription» component to the artifact to be included.
The «ModelPackageDescriptionFile» stereotype includes natureCode and purposeCode attributes used to identify
the nature and purpose of the artifact being included [NIEM-MPD 4.2.4 and Appendix G]. In particular, the
inclusion of an XML schema in an MPD is represented by using the «Namespace» package representing the schema
(see Subclause 7.2.1) as the included artifact.

An MPD may also group artifacts into file sets [NIEM-MPD 4.2.3]. Such a file set is represented in an MPD model
as a UML component with the «ModelPackageDescriptionFileSet» stereotype applied. The
«ModelPackageDescriptionFileSet» stereotype includes attributes for identifying the nature and purpose of the file
set. A «ModelPackageDescriptionFileSet» component must be the supplier of exactly one usage dependency whose
client is the corresponding «ModelPackageDescription» component. Artifacts are modeled as being included in a
file set be using «ModelPackageDescriptionFile» usage dependencies from the «ModelPackageDescriptionFileSet»
component, in the same way as they are used to include artifacts directly in a «ModelPackageDescription»
component. Note that one artifact may be included in multiple file sets.

Relationships between MPDs may be representing by using a dependency between the packages with the
«ModelPackageDescription» stereotype applied.

PIM
If a PIM «Namespace» package is included in an MPD model, then the NIEM schema included in the MPD is
considered to be the schema represented by the PSM representation of the «Namespace» package and its content, as
mapped from the PIM. If the package is an «InformationModel» package with a default purpose, then the usage
dependency between the «ModelPackageDescriptionFile» component and the package need not be stereotyped.
Instead, the nature of the artifact is implicitly assumed to be “XSD” and the purpose is given by the default purpose.
However, if the «InformationModel» package is to be used for a purpose other than the default purpose, then an
explicitly stereotyped «ModelPackageDescriptionFile» usage dependency may be used, and the purposeCode
specified for that dependency overrides the default purpose for the package.

If a PIM «InformationModel» package that is modeled as being included in an MPD has a usage dependency on
another «InformationModel» package, then that latter package is also considered to be included in the MPD, even if
there is no direct usage dependency between the component representing the MPD and that package. The value of
the default purpose of the «InformationModel» stereotype is used to determine the purpose for the inclusion of the
package in the MPD, as above.

Further, if the default purpose of the used package is subset and the using package uses any elements of the
reference model (e.g., classifiers used as types or properties used as the suppliers of «References» realizations), then
these uses are considered to instead be substituted with uses of elements from the subset package with the same
name. If such elements do not exist in the subset package, then they are considered to be implicitly created in the
subset package, in the same way as would result from reference element uses within the subset package itself (see
Subclause 7.6.1).

Note that this means that the schema content mapped from a subset package may be contextual, depending on how
the subset package is actually used within an MPD model. Essentially, such a subset model may be considered a
model of the intent to create a subset schema to support a certain schema set within an MPD, rather than a detailed
specification of exactly what that subset must be.

NIEM-UML Modeling Guide

June 2012 70

PSM
A PSM «Namespace» package is always included in an MPD model using an explicit
«ModelPackageDescriptionFile» usage dependency, with the natureCode and purposeCode given.

2.6.2.3 Mapping Summary

PIM Representation Mapping
• An unstereotyped usage dependency from a «ModelPackageDescription» or

«ModelPackageDescriptionFileSet» component to an «InformationModel» package shall be considered
equivalent to the usage dependency having the «ModelPackageDescriptionFile» stereotype applied with a
natureCode of “XSD” and a purposeCode corresponding to the value of the defaultPurpose attribute of the
«InformationModel» stereotype.

• If an «InformationModel» package included in an MPD has an unstereotyped usage dependency on another
«InformationModel» package in an MPD model, and the later package is not the client of a
«ModelPackageDescriptionFile» usage dependency, then this shall be considered equivalent to explicitly
modeling a «ModelPackageDescriptionFile» usage from the component representing the MPD to the second
«InformationModel» package, with the purpose being given by the value of the defaultPurpose attribute of the
«InformationModel» stereotype, as above. (Note that this rule may then need to be applied recursively to the
second package.)

• If an «InformationModel» package has an MPD model has an unstereotyped usage dependency on an
«InformationModel» package with defaultPurpose=subset, then any uses of elements of the reference model
corresponding to the subset package shall be considered to instead be uses of corresponding elements from the
subset package with the same NIEM name. If a corresponding element does not exist in the subset package, one
is created in the same way as specified for the PIM Representation Mapping in Subclause 7.6.1.3.

MPD Model to MPD Artifact Mapping
• A component in an MPD model with the stereotype «ModelPackageDescription» applied shall map to an MPD

file with the corresponding properties given by the values of the attributes of the «ModelPackageDescription»
stereotype.

• A usage dependency in an MPD model with the stereotype «ModelPackageDescriptionFile» applied, from a
«ModelPackageDescription» component to a «Namespace» package, shall map to the inclusion of the XML
schema mapped from the «Namespace» package in the MPD represented by the «ModelDescriptionPackage»
component, with a File element determined by the values of the attributes of the
«ModelPackageDescriptionFile» stereotype. (If the «Namespace» package is from a PIM, it is first mapped to a
PSM representation before being mapped to an XML schema.)

• A usage dependency in an MPD model from a «ModelPackageDescription» component to a
«ModelPackageDescriptionFileSet» component shall map to a FileSet element in the modeled MPD as
determined by the values of the attributes of the «ModelPackageDescriptionFile» stereotype. A usage
dependency with the stereotype «ModelPackageDescriptionFile» applied, from the
«ModelPackageDescriptionFileSet» component to a «Namespace» package, shall map to the inclusion of the
XML schema mapped from the «Namespace» package as a file in the FileSet, with a corresponding File
element as determined by the values of the attributes of the «ModelPackageDescriptionFile» stereotype.

• A dependency in an MPD model with the stereotype «ModelPackageDescriptionRelationship» applied, from
one «ModelPackageDescription» component to another, shall map to a relationship recorded in the MPD
mapped from the first component with a URI referencing the MPD mapped from the second component.

2.6.2.4 Example
Figure 7-37 is an example of the representation of two MPDS that share three files (namespaces) through
«ModelPackageDescriptionFile» usage dependencies.

NIEM-UML Modeling Guide

June 2012 71

Figure 7-37 Representation of two NIEM MPDs with included namespaces (files)

Please see Figure A-27 for an additional example.

NIEM-UML Modeling Guide

June 2012 72

Annex A NIEM-UML PIM Example
A.1 Example Description
This example is intended to illustrate use of the NIEM-UML PIM. This is a fictitious example that uses many, but
not all, of the NIEM-UML features. This example assumes some knowledge of UML and NIEM, but you don’t need
to be an expert. Note that this example is intended to be read with the normative NIEM-UML specification.

The business use case is for “Pet Adoption Centers” which need to share information on their pet adoptions with
each other and with government agencies. The information required includes data about the pets, the people
adopting the pets and the pet adoption centers. Information for sets of adoptions is defined in a NIEM exchange as
part of an “IEPD”.

A.2 Organization of NIEM Information Models and Classes

Figure A-1 Namespace Organization

NIEM-UML Modeling Guide

June 2012 73

As with all NIEM exchanges an essential part of the analysis is the reuse of the NIEM reference vocabularies. Since
there is no established domain for pet adoptions NIEM-Core is reused, much of the information required is already
defined in NIEM-Core and thus needs to be structured for our particular use case.

What cannot be found in NIEM-Core is defined as new information types in an “extension information model” for
pet adoptions. The reused and extended classes are then combined to form an exchange information model – the
actual data structure for a specific data exchange.

The Pet Adoption PIM model is organized into three subpackages, each representing a particular kind of NIEM
information model. Each package is stereotyped as a NIEM «InformationModel» which has tags for the URI,
version and NIEM compliance. The nature of the namespace (as subset, exchange, extension, etc. is defined as the
package is used in an MPD). The packages are:

• PetAdoptionNIEMCoreSubset – this is a NIEM “subset namespace” (or subset schema) that has the special
role of subsetting a single reference namespace for use in a particular MPD. A subset namespace can’t add any
new information.

• PetAdoptionExtension – this is a NIEM “extension schema” and includes new concepts about pets and pet
adoptions that could be reused in other MPDs. The extension namespace uses and extends elements from the
subset namespace.

• PetAdoptionExchange – this is a NIEM exchange namespace and includes the classes representing actual
exchanges between parties. The exchange namespace uses classes from the subset and exchange namespace to
specify these data packages.

The model elements, below, are all defined inside one of these namespaces, the namespace name is shown below the
class names.

Note that there is one additional package, which is used to hold the Model Package Description, defined in
Subclause A.23.

A.3 High-level design

Figure A-2 High Level Design

This high-level UML model shows the primary classes of our information model:

• Pets

NIEM-UML Modeling Guide

June 2012 74

• Persons

• Pet Adoption Centers

• Pet Adoptions

A pet adoption is the event that binds together all of these elements and will be the primary subject of our
information exchange.

Each UML class has both a name and an owning package (shown below the name). The package owning a class
corresponds with a NIEM namespace and is an essential element of the design. Note that “Pet”, “PetAdoption” and
“PetAdotionCenter” are part of the “PetAdoptionExtension” schema. An extension schema is normally where new
domain concepts are defined.

A.4 Documenting Elements
NIEM requires most elements to be documented. A
single UML comment is used to document an
element using the NIEM rules regarding the format
of documentation. Most UML tools provide an easy
way to create such documentation elements. The
documentation for class “Pet” illustrates NIEM
compatible documentation in Figure A-3.

A.5 UML Associations Defining NIEM Properties
The lines between the classes in the above diagram are UML associations. UML associations define the relationship
between classes. Note that there is also the concept of a NIEM association which has some additional capabilities;
we will look at these later. At each end of the association is an “association end”. Each association end defines a
NIEM property for the opposite end that specifies the property’s name, type and multiplicity. Along with the end
you will notice a multiplicity notation; multiplicity defines how many values a property may have. Where there is a
“*” any number is allowed. Frequently you will see a range of values, such as 1..* which means at least one with no
limit. Given this you can see that six properties are defined by the above associations as follows:

• The “AdoptionOfPet” property of pet (a Pet Adoption), of which there can be any number of values (including
zero)

• The “AdoptedPet” property of “PetAdoptions” (a Pet), which must have one value (each adoption is for a single
pet)

• The “AdoptingPerson” property of “PetAdoption” (A Person), which has one value per adoption.

• The “AdoptionCenter” property of “PetAdoption”, which also has one value, and,

• The “AdoptionByCenter” property of “PetAdoptionCenter” (An adoption), which can have any number of
values (an adoption center adopts many pets).

• The "AdoptionByPerson" property of "Person” (An Adoption) which can have any number of values.

Each of these properties is a reference to an instance of the other class – they are each separate entities connected by
these associations. If the information about the entities was contained in one of these classes (as embedded content)
a UML “Aggregation” (diamond) would be used, we will see this later as well.

Figure A-3 Documenting Elements

NIEM-UML Modeling Guide

June 2012 75

A.6 UML Enumerations Defining NIEM Code Types
One thing we would like to know about our pets is what kind of pet they are. We
will define a UML “Enumeration” for our kinds of pets called “PetKind”.

The enumeration is a type with a specific set of values. In Figure A-4 we have
defined values with tokens for each kind of pet we are concerned with; Dog, Cat,
Bird, etc. The UML enumeration defines a NIEM “Code Type”.

A.7 Defining a simple property for an adoption center
Now that we have our enumeration type defined we can use it as
the type of a property. We will add a simple property to the
“PetAdoptionCenter” to define the kinds of pets it offers.

In Figure A-5 we have added a property called
“PetKindsOffered” to “PetAdoptionCenter” with a “type” of
“PetKind”. By putting a “*” multiplicity after it we have also
said that an adoption center may offer many kinds of pets. As a

property the value for “PetKindsOffered” is an “aggregation” and will be contained as nested elements inside of
PetAdoptionCenter data.

A.8 Properties of Pet
Classes may have any number of properties of any type. There
are also built in types for strings, integers, numbers, dates, etc.
Any primitive data type that you can use in XML schema can be
used in NIEM-UML. The expanded “Pet” class shows
additional properties.

Pet has four properties:

• PetKind, using the same enumeration, above. A pet can only have one kind.

• PetName, a string. The pet name is optional.

• PetBreed, also a string. To support mixed breeds pets can have multiple breeds.

• And PetIdentification, which we will explore next.

Figure A-4 Enumeration

Figure A-5 Simple Properties

Figure A-6 Properties of Pet

NIEM-UML Modeling Guide

June 2012 76

A.9 Properties Using Classes as Their Types
The type of the PetIdentification property is
“Identification”, let’s take a look at the
Identification class.

The identification class in Figure A-7 is another
class like pet or person, but it already has
several properties. Note that the properties have
types like “String”, “Text” and “Date” – these
are all built-in primitive types. But where did all
this come from? Note that it is in
“PetAdoptionNIEMCoreSubset”. This means
that Identification reuses an existing class in
NIEM Core.

A.10 Finding Classes in Reference Namespaces
A primary feature of NIEM is the ability to
reuse existing definitions. Being able to identify
something is very common task for NIEM
modelers so we looked in “NIEM-Core” to see
what was there. NIEM-Core is one of the
several reusable vocabularies defined in NIEM.
On the right are a few of the classes in NIEM-
Core as seen from a UML tool.

You can see in Figure A-8 that we are “in” the
“niem-core”, version “2.0”. We see a start of the
list of classes; there are a lot of them. We may
use search features of the UML tool or just scan
for what we want.

Further down we see classes having to do with Identification:

Figure A-9 Finding the Identification Class

Pulling the identification class into a UML diagram in Figure A-10 we see:

Figure A-7 Properties Using Identification Class

Figure A-8 NIEM-Core Listing

NIEM-UML Modeling Guide

June 2012 77

Figure A-10 Identification Class Contents

This seems to have a lot of the identification properties we need, perhaps more than we need! We also see that some
of the properties have no type, these are placeholders for a “substitution group”. A substitution groups allows
different representations of a concept that can either be defined in your model or at runtime. Finding these in our
model we see what representations these properties can have.

Figure A-11 Identification Substitution Groups

Note that in NIEM-Core “IdentificationCategory” can only have one representation (Text), however this could be
expanded in other information models. On the other hand “IdentificationJurisdiction” can have 3 kinds of values,
lets say that for our simple pets we only want one of these, the text version. We know that each of these is an
alternate representation because it “subsets” another property. When one property subsets another, it defines a NIEM
substitution group and these subset properties can be used in place of the property they subset.

There is one other special feature being used here, that is «PropertyHolder». The property holders define properties
that can be used in classes but aren’t used in any class yet. The property class is kind of invisible to NIEM. The
properties in a property holder are known as “global properties”. Since these global properties subset another they
can be used in place of them, anywhere.

What we want to do now is use all these parts and pieces to define “Identification” in our model.

A.11 Defining a subset namespace with «References»
A NIEM subset information model (which should not be confused with UML subset properties) is a special
information model where standard NIEM elements are reused and tailored for a specific purpose. A subset

NIEM-UML Modeling Guide

June 2012 78

information model can only tailor existing material, not define anything new. What we are going to do is define our
own configuration for “Identification” that builds on all these parts.

Figure A-12 Identification Subset Class Using References

The “Identification” class in “PetAdoptionNIEMCoreSubset” «References» Identification in NIEM-Core. What we
did is copy-paste properties from the NIEM-core version to make the class we want for our pet model. We also don’t
need all these options for categories and jurisdictions so we also referenced specific properties in those property
holders. Since these subset properties in NIEM-Core “Identification” it is legal to reuse them here. We could have
also chosen to keep all these options, but that just seemed like overkill.

Note that «References» is used between information models, classes or properties. When between classes all the
properties with matching names are implicitly referenced. Each property that is referenced uses its definition from
NIEM-Core and must be compatible with it.

So the “Identification” class on the left is the one we are going to use, it is the one that is the type of the pets
identification but will also be used to identify people and adoption centers. Note that the multiplicities of our
properties have been narrowed – this is a legal and normal thing to do in a subset schema.

So what we have done is find existing concepts in NIEM-Core and configure these for reuse in our customized class.
This is a primary activity in NIEM – get used to it!

NIEM-UML Modeling Guide

June 2012 79

Figure A-13 Reuse of Person Class

NIEM-UML Modeling Guide

June 2012 80

A.12 Reusing Person
Our exchange also deals with people. NIEM-Core has a LOT of information about people. Here we see “Person”
from NIEM core and also the small subset of it we will use in our example.

As you can see in Figure A-13, “Person” in NIEM-Core is huge! What we did is just pick 2 properties that we want
out NIEM-Core person – we really don’t care much about their DNA or Disguises! As before, we just made
properties with the same name and type as the reference person to reuse them, in most tools you can do this with a
copy/paste.

Notice that we are already reusing parts of our own model, “Identification”. We have been able to use the very
general idea of identification for both Pets and people, and we will be able to use if for adoption centers as well.

NIEM-UML Modeling Guide

June 2012 81

A.13 Reusing Person Name
The name of a person in NIEM core has a type of
“PersonName”. Without much problem we find “PersonName”
in NIEM-Core. This is a very complete treatment of name, but
since this has all been thought out we will use most of it, just
not “personNameCommentText”. So we have a person and a
person’s name. We can now use the “PersonName” property
already defined in NIEM-Core

A.14 Contact Information
In addition to their name we are also going to want to record
multiple ways to contact people (as well as adoption centers, but that is later).

There are two considerations for contact information with respect to Person – defining the contact information as
well as creating an association between the contact information and person. First let’s look at our definition of
contact information; you should understand most of this picture now in Figure A-15.

Figure A-15 Referencing Contact Information

As you can see in Figure A-15, this is a very general idea of contact information that can have any number of
various kinds of contacts. Note that “ContactInformation” references “ContactMeans” which is used as the base of a
substitution group with a set of properties that subset it. Contact means is further defined on the right as a set of
possible properties. We have chosen to allow 4 possibilities out of the 10 pre-defined in NIEM-Core:

Figure A-14 Reusing Person Name

NIEM-UML Modeling Guide

June 2012 82

ContactEmailID, ContactTelephoneNumner, ContactMobileTelephoneNumber and ContactMailingAddress. Any of
these forms of contact may be used as contact information in our model. By the way, if we didn’t find it here we can
also extend the list of possible representations by subclassing the property holder. Since we have used telephone
number we have to define this as well, drawing from NIEM-Core. In Figure A-16 we will just show you this model
fragment as it uses the same pattern of referencing.

Figure A-16 Telephone Number

NIEM-UML Modeling Guide

June 2012 83

A.15 Augmenting Telephone Number
Consider that we wanted some additional information about telephone numbers and wanted to be able to “mix in”
that information with a variety of telephone numbers. This is the use case for NIEM augmentations. An
augmentation defines a type that can be “mixed in” with other types. Unlike regular objects it is legal to inherit
multiple augmentations into a type since they are not represented as XML extensions, rather as augmentation
properties. Augmentation properties can also be defined directly in NIEM-UML.

Our use case is that we want to define a telephone number augmentation for the type of telephone (i.e. land line,
mobile, etc). We then want to extend the NIEM-core TelephoneNumber and define a new type in our extension
schema that includes the telephone type.

The augmentation type in Figure A-17
is stereotyped as an
«AugmentationType» and is also
specified to «Augment» telephone
number. This means that anything that
uses TelephoneNumberAugmentation
must be a telephone, note that
specifying «Augments» is optional. In
the NIEM XSD the TelephoneNumber
in PetAdoptionExtension will extend
telephone number but also include an
augmentation property for
TelephoneNumberAugmentation based
on the NDR pattern for supporting
augmentation in XML. Our new
TelephoneNumber can now be used
anywhere the NIEM-Core
representation of telephone number may
be used.

Figure A-17 Augmenting Telephone Number

NIEM-UML Modeling Guide

June 2012 84

A.16 Using a NIEM Association for Contact Information

Figure A-18 Contact Information Association

Remember that when we used a UML association it made properties in the classes on the ends. For somewhat more
flexibility NIEM-Core uses a “NIEM Association” between Person and Contact Information. A NIEM association
isn’t just a property; it is a first-class, stand-alone piece of data that relates two or more things.

In this Figure A-18 (which is still a subset of all the information) we put more of the pieces together and see a NIEM
association “PersonContactInformationAssoiciation” that is defined in NIEM core and then reused in our example.
This association class allows us to connect any person with any piece of contact information. So, for example, we
could represent two people with the same address. As always, we reference the NIEM-Core and pick out the
properties we want.

Note that PersonContactInformationAssoiciation on the right is an «AssociationType» where as we modeled it as a
UML “Association Class”, both of these representations mean the same thing in NIEM but we are using some built-
in UML functionality in our PIM whereas the NIEM-Core is based on the structure as it is found in the XML
schema. You have the choice of using association classes or classes with the «AssoiciatonType» stereotype. Note
that there are some edge-cases that can only be expressed using «AssoiciatoonType» but that association classes
have some additional power to define the multiplicity between the associated classes.

Since PersonContactInformationAssoiciation in our PIM is both an association and a class we can use it like any
other class, it can be the type of properties or other associations – this provides for a very powerful network of
information.

NIEM-UML Modeling Guide

June 2012 85

A.17 Pet Adoptions as a kind of activity

Figure A-19 Defining Activity From NIEM-Core

There is some more properties of a pet adoption we would like to consider, these come from it being a kind
of activity and activities being available in NIEM-Core.

This pattern of reuse in Figure A-19 should look quite familiar now; we are combining the NIEM-Core concept of
activity with one of the representations of that activities date. Since pet adoptions are a kind of activity it makes
sense for pet adoptions to be a subclass of activity.

By making PetAdoption a UML Subclass of Activity all the properties of activity become available to Pet Adoption
– every pet adoption is an activity.

The constraint in NIEM (Due to XML Schema restrictions) is that a class can only be a subclass of at most one other
class. So you want to use a subclass only when the superclass can’t be anything else at the same time (in the next
section we will see how to handle other cases).

A UML subclass, or generalization, maps to an “extension” in XML schema unless it is generalizing an
augmentation type or uses RolePlayedBy (see below). So in the XML, PetAdoption will extend Activity.

Figure A-20 PetAdoption as a kind of Activity

NIEM-UML Modeling Guide

June 2012 86

A.18 Pet Adoption Centers as a role of an organization
It may have occurred to you by now
that while pet adoption centers are not
that common a concept, that these are
organizations that have a lot in
common with other organizations.
There is a well-developed model for
organizations in NIEM-Core which we
can reuse. Figure A-21 uses the same
«References» pattern we have seen
previously and we pick up some of the
standard properties. We are not going
to reproduce all the properties of
Organization to save some space – you
should understand this pattern by now
and can look at the model for the
details.

But, what is the relationship between
pet adoption center and organization? One common way to express this is for something like adoption center to
subclass organization –after all it is an organization. Another option is for per adoption center to be considered a
“role” of an organization – this would allow for an organization to “play the role” of an adoption center while also
playing other roles, perhaps as a rescue center or veterinarian.

Figure A-22 shows that
PetAdoptionCenter is a
«RolePlayedBy» an organization.
An organization may play multiple
roles and these roles can come and
go over time. This kind of role
happens at most once for an
organization, the organization isn’t
a PetAdoptionCenter multiple
times. Such roles are defined by
using the «RolePlayedBy»
stereotype on a generalization.
There is another type of role where
a base type can play the role many
times – for example a person may
be a prize winner multiple times
and each time has different
characteristics. This other kind of
role uses «RoleOf» properties.
NIEM-UML supports both kinds of
roles but they are both represented
as properties in NIEM-XML
(NIEM XML does not formally
distinguish role types, it is implied
by their multiplicities).

Figure A-21 Using Organization from Core

Figure A-22 Adoption Centers as a ROLE of an Organization

NIEM-UML Modeling Guide

June 2012 87

A.19 Putting together the high-level picture

With the “parts and pieces” we have built-up so far we can now fill out our high level diagram in Figure A-22,
complete with properties, but not showing all the associations.

As we can see, the high-level diagram we started with has been filled-out with a combination of properties from
NIEM-Core as well as some we defined for this domain. Of course this is augmented by the additional classes
referenced by this model and the NIEM associations for contact information. While pet adoption is an unusual use
case, we were still able to reuse most of our classes and properties from NIEM-Core. Note that there are additional
contact associations for people and adoption centers that are not shown here.

A.20 Primitive types
We have been using properties with “primitive types” like strings numbers and dates. We have also seen some more
specialized primitive types like “PersonNameText”. Where do these come from? The basic types like Strings come
from a “Primitive type library” that is standard in NIEM-UML. It is imported by using the profile and always
available. More specialized primitive types are either in NIEM-Core or defined within a model as subtypes of these
built-in types. The following are the primitive types used in this example model.

Figure A-23 Completed High Level Picture

NIEM-UML Modeling Guide

June 2012 88

The above are shown for clarity – it is not nessisary to reference each and every primitive type.
Any type that is referenced is automaticly included in the subset information model.

A.21 The Pet Adoption Exchange
The classes above serve to define information about pet adoption, but what exactly does a particular data exchange
for a pet adoption look like? For a particular exchange we could have multiple adoptions, people, pets, etc.

What we do is gather all of
the classes we are concerned
with together into a class
defined in an “exchange
schema package”, these
become the top level
messages. The
PetAdoptionExchange” in
Figure A-25 is defined to
contain a set of: People,
Pets, PetAdoptions,
PetAdoptionCenters,
Addresses, Contact
Information and

associations. This information package aggregates all the others into a handy grab bag of pet related data.

Figure A-24 Primitive Types

Figure A-25 Pet Adoption Exchange

NIEM-UML Modeling Guide

June 2012 89

A.22 Using classes by default

Figure A-26 shows that the entire “PetAdoptionNIEMCoreSubset” model «references» the “niem-core” model. By
referencing the entire package anyNEIM-CORE elements that are used by PetAdoptionNIEMCoreSubset but not
explicitly included are included by default. Also, any reference to an element in NEIM_CORE will automaticly be
redefined to reference the cooresponding element in PetAdoptionNIEMCoreSubset. It is good practice to inspect the
types and properties automaticly included to make sure you are not including more than is nessisary – this may be
done in the PSM model or some tools may provide features for doing so.

Using the Cameo NIEM-UML features subsets are simplified. A subset namespace is created and populated with
the customized user interface.

This concludes the platform independent part of the example.

Figure A-26 Referencing NIEM Core

NIEM-UML Modeling Guide

June 2012 90

A.23 The Pet Adoption IEPD Model
The platform independent model, above, specifies the information model relative to pet adoption, but not the IEPD
its self. An IEPD is a NIEM artifact that includes all of the data and metadata relative to a kind of data exchange. An
IEPD is a kind of “MPD” as defined in the NIEM “Model Package Description” specification. An IEPD has a very
specific format and contents, part of which is the XML Schema files that may have been produced from a NIEM-
UML model.

MPDs and IEPDs are also defined in a model, a model of the MPD artifact. This model is primarily the metadata
concerning the MPD. It also references the PIM and PSM packages that contain the classes used in an exchange.
Figure A-27 is the IEPD model for our example.

The component stereotyped as “ModelPackageDescription” on the left represents the IEPD. The tag values of this
stereotype define the IEPD metadata such as the description, URI and purpose. The “meat” of an IEPD is in the
information models imported using a UML «import». The packages imported are those that we have been building
all-along in our PIM, these are:

• PetAdoptionExchange – the package that holds the PetAdoptionExchange class. Each class in such a package
will be a top-level unit of information exchange.

• PetAdoptionExtension – these are the new concepts defined for Pet Adoption, some of which use or extend
NIEM-Core concepts.

• PetAdoptionNIEMCoreSubset – this is the namespace that subsets NIEM-Core using «References» and
configures those concepts for our use in pet adoption.

Note that each information model has a defaultPurpose that cooresponds to the NIEM schema types. This purpose
will be used unless that purpose is overridden using the «ModelPackegDescriptionFile» stereotype of an import.

Each namespace will produce an XML schema that becomes part of the IEPD.

Note that each namespace has a “targetNamespace” tag, its URI, a version and an indicator that the namespace
conforms to NIEM. Also, for each package that uses elements of another, there is a UML «uses» dependency
between those packages – this is required to establish the context for each information model.

Based on the PIM model combined with the MPD model, NIEM-UML compliant tools are able to produce a
complete NIEM-Compliant MPD from a NIEM-UML model. The machine-readable files of this specification
include the complete model as well as the generated IEPD.

Figure A-27 IEPD Specification

NIEM-UML Modeling Guide

June 2012 91

Annex B Terms and Definitions
2.7 Definitions
Artifact (NIEM)
An electronic file or a labeled set of logically cohesive electronic files. For example, an IEPD is usually composed
of many artifacts (XML schemas, XML files, documentation files, etc.)

Association (NIEM)
Establishes a relationship between objects, along with the properties of that relationship; provides a structure that
does not establish existence of an object but instead specifies relationships between objects. A NIEM association
may relate multiple objects.

Augmentation (NIEM)
A container element that bears additional properties that may be added to an object type to supplement the properties
of the original object definition. Augmenting a type does not change the semantics of that type. A NIEM
augmentation can only be applied to the types specified in its definition. Augmentations may be used in combination
as needed to supplement an object.

Catalog (NIEM)
An artifact for an IEPD that identifies and classifies all artifacts that comprise the IEPD, and that also contains
metadata associated with the IEPD. A catalog is an XML instance defined by the XML catalog schema specified in
the NIEM Model Package Description (MPD) Specification.

Change Log (NIEM)
A formal or informal artifact that records the changes applied since the last release of the product the change log is
associated with.

Core Update (NIEM)
Used to add new schemas, new data components, new code values, etc. to NIEM Core; in some cases a core update
can make minor modifications to existing core data components; however it is never used to replace a NIEM core
version.

NIEM Conformance (also NIEM-conforming)
Adherence to the NIEM Naming and Design Rules (NDR), Model Package Description Specification (MPD), and
the more general NIEM Conformance Specification when developing a NIEM release, domain update, core update,
IEPD (for an information exchange), or an EIEM (composed of BIECs) and their associated artifacts.

Constraint Schema (NIEM)
An IEPD schema with the purpose of restricting or constraining content that appears in instances of the subject
schema. A constraint schema is not NIEM-conforming. Use of constraint schemas in IEPDs are a technique for
enforcing additional constraints on schemas that cannot otherwise be enforced through the NIEM reference schemas.

Data Component (NIEM)
A W3C XML Schema definition for an XML type, element, attribute, or any other NIEM-conforming XML Schema
construct. Sometimes also referred to as “metadata component.”

NIEM-UML Modeling Guide

June 2012 92

Domain Update (NIEM)
One or more XML schemas that are a replacement for or that supplement a given version of a published NIEM
domain release or another domain update.

Exchange Schema (NIEM)
An IEPD schema with the purpose of defining the content model of the information exchange. An exchange schema
works in conjunction with the subset, extension, and constraint schemas to form a complete package that represents
the exchange. The exchange schema is essentially the root schema within the set of schemas that defines an
exchange.

Extension Schema (NIEM)
An IEPD schema that extends existing NIEM data components (i.e., types and elements), or that defines new NIEM-
conforming data components to be used in an information exchange.

NIEM Information Exchange Model (IEM)
One or more NIEM-conforming XML schemas that together specify the structure, semantics, and relationships of
XML objects that are consistent representations of information. The five IEM classes in NIEM are: (1) release, (2)
core update, (3) domain update, (4) Information Exchange Package Documentation (IEPD), and (5) Enterprise
Information Exchange Model (EIEM).

NIEM Information Exchange Package (IEP)
An XML instance of an IEPD that is or will be the specific information exchanged between a sender and a receiver
on-the-wire. In general, an IEPD contains schema and documentation artifacts. As part of its documentation, an
IEPD is required to contain at least one sample IEP for each document (root) element defined within its exchange
schema(s).

NIEM Information Exchange Package Documentation (IEPD)
The aggregation of XML schemas and associated documentation artifacts that completely specify and describe an
information exchange. Documentation must include a catalog, change log, master document, and sample IEPs for
each document element, and may optionally include other artifacts that may be useful to implementing the IEPD
(e.g., business rules, business requirements, etc.).

Master Document (NIEM)
An artifact required in an IEPD that is the primary text-based documentation for the IEPD. The Master Document
generally establishes baseline information about the IEPD and references any other optional and supplementary
documentation. Similar to a “readme” file.

Metadata
Describes data about data, that is, information that is not descriptive of objects and their relationships, but is
descriptive of the data itself.

Model
A formal specification of the function, structure and/or behavior of an application or system.

Model Driven Architecture (MDA)
An approach to system specification that separates the specification of functionality from the specification of the
implementation of that functionality on a specific technology platform.

NIEM-UML Modeling Guide

June 2012 93

NIEM Model Package Description (MPD)
An organized set of files that contains one and only one of the five classes of NIEM IEM, as well as supporting
documentation and other artifacts. An MPD is self-documenting and provides sufficient normative and non-
normative information to allow technical personnel to understand how to use and implement the IEM it contains. An
MPD is packaged as a compressed archive.

NIEM Core
The NIEM namespace (or corresponding XML schema) that contains all data components determined to have
relevance to and semantic agreement by most or all participating domains. Notionally, NIEM Core contains all
reusable data components that are not domain-specific and are governed by the NIEM Business Architecture
Committee (NBAC).

NIEM Domain
A line-of-business, community-of-interest, or other similar grouping that is assigned a NIEM namespace, has
responsibility to act as an authoritative source and steward of domain-specific data components, and can propose
promotions of data components to the NIEM Core namespace.

NIEM-conformant Schema
An XML Schema document conforms to the NIEM Naming and Design Rules (NDR). These generally include
reference schemas, subset schemas, extension schemas, and exchange schemas.

Normative
Provisions that one must conform to in order to claim compliance with the standard. (as opposed to non-normative
or informative which is explanatory material that is included in order to assist in understanding the standard and
does not contain any provisions that must be conformed to in order to claim compliance).

Normative Reference
References or specifications that contain provisions that one must conform to in order to claim compliance with the
standard that contains said normative reference.

Object Constraint Language (OCL)
An adopted OMG standard and formal language used to describe expressions on MOF models. These expressions
typically specify invariant conditions that must hold for the system being modeled or queries over objects described
in a model. Note that when the OCL expressions are evaluated, they do not have side effects; i.e., their evaluation
cannot alter the state of the corresponding executing system. For the purpose of this specification, references to OCL
should be considered references to the Object Constraint Language Specification, cited in Normative References,
above.

Platform Independent Model (PIM)
A model of a subsystem at a logical level that contains no information specific to the platform or the technology that
is used to realize it.

Platform Specific Model (PSM)
A model of a subsystem that includes information about the specific technology that is used in the realization of it
on a specific platform, and hence possibly contains elements that are specific to the platform.

NIEM-UML Modeling Guide

June 2012 94

Query/View/Transformation (QVT)
A standard for writing transformation specifications between MOF based metamodels; a QVT engine is able to
execute transformations and create or update a target model from a source model.

Reference Schema (NIEM)
An XML Schema document that meets all of the following criteria:

• It is explicitly designated as a reference schema. This may be declared by an IEPD catalog or by a tool-specific
mechanism outside the schema.

• It provides the broadest, most fundamental definitions of components in its namespace.

• It provides the authoritative definition of business semantics for components in its namespace.

• It is intended to serve as the basis for components in IEPD schemas, including subset schemas, constraint
schemas, extension schemas, and exchange schemas.

• It satisfies all rules specified in the Naming and Design Rules for reference schemas.

• In general, NIEM releases are composed of NIEM reference schemas.

Release (NIEM)
A set of schemas published by the NIEM Program Management Office (PMO) and assigned a unique version
number; a release is of high quality and has been vetted by NIEM governance bodies; includes micro, minor or
major releases.

W3C Resource Description Framework (RDF)
A language for representing information about resources in the World Wide Web. It is particularly intended for
representing metadata about Web resources, such as the title, author, and modification date of a Web page, copyright
and licensing information about a Web document, or the availability schedule for some shared resource. By
generalizing the concept of a “Web resource”, RDF can also be used to represent information about things that can
be identified on the Web, even when they cannot be directly retrieved on the Web. RDF is intended for situations in
which this information needs to be processed by applications, rather than being only displayed to people. RDF
provides a common framework for expressing this information so it can be exchanged between applications without
loss of meaning.

Root Element (NIEM)
A globally defined element in a NIEM IEPD exchange schema. A root element can always be used as the top-level
XML document element within an XML instance defined by the IEPD.

Schema Subset (NIEM)
A set of subset schemas derived from a NIEM reference schema set, usually a NIEM release. Any XML instance
that validates with a correct schema subset will also validate with the complete reference schema set from which the
schema subset was derived (See also “subset schema.”).

Subset Schema (NIEM)
A schema that constitutes a part (i.e., subset) of a NIEM reference schema; a schema whose data components are
taken entirely from a NIEM reference schema while excluding those components that are unnecessary for a given
exchange. Subset schemas are generally used in an IEPD as related set, i.e., from the same reference schema set
such as a NIEM release (See also “schema subset.”).

NIEM-UML Modeling Guide

June 2012 95

Unified Profile for DoDAF and MODAF (UPDM)
A profile that defines a standard set of elements, relationships that exist between them, and a number of views and
viewpoints which are used to support the development of an Enterprise Architecture primarily for the military
community of interest.

XML Metadata Interchange (XMI)
XMI is a widely used interchange format for sharing objects using XML. Sharing objects in XML is a
comprehensive solution that build on sharing data with XML. XMI is applicable to a wide variety of objects:
analysis (UML), software (Java, C++), components (EJB, IDL, CORBA Component Model), and databases (CWM).
For the purpose of this specification, references to XMI should be considered references to the XML Metadata
Interchange (XMI) 2.0 Specification, cited in Normative References, above.

XML Schema Document (XSD)
A document written in the W3C XML Schema language, typically containing the “xsd:” or “xs:” XML namespace
prefix and stored with the “.xsd” filename extension. Like all XML schema languages, XSD can be used to express
a set of rules to which an XML document must conform in order to be considered 'valid' according to that schema.
Sometimes also referred to as XML Schema Definition.

 eXtended Markup Language (XML)
Extensible Markup Language (XML) is a simple, very flexible text format derived from SGML (ISO 8879).
Originally designed to meet the challenges of large-scale electronic publishing, XML is also playing an increasingly
important role in the exchange of a wide variety of data on the Web and elsewhere.

2.8 Acronyms
BIEC Business Information Exchange Component
DoD Department of Defense
EIEM Enterprise Information Exchange Model
IC Intelligence Community
IEPD Information Exchange Package Documentation
MDA Model Driven Architecture
MPD Model Package Description
NDR Naming and Design Rules
NIEM National Information Exchange Model
OCL Object Constraint Language
PIM Platform Independent Model
PM-ISE Program Manager for the Information Sharing Environment
PSM Platform Specific Model
QVT Query/View/Transformation
UML Unified Modeling Language
UPDM Unified Profile for DoDAF/MODAF
XMI XML Metadata Interchange
XML eXtensible Markup Language
XSD XML Schema Definition

	Table of Contents
	1 Introduction
	1.1 Intent of this document
	1.2 NIEM-UML Background
	1.3 OMG NIEM-UML and Cameo NIEM-UML
	1.4 Intended Users of NIEM-UML
	1.5 Understanding NIEM-UML and Model Driven Architecture (MDA)
	The NIEM Platform
	1.5.2 Intent of the PIM
	1.5.3 Intent of the PSM
	1.5.4 The NIEM PIM and the NIEM PSM
	1.5.5 NIEM-UML Transformations
	1.5.6 NIEM-UML Libraries

	2 NIEM-UML Modeling Guide
	2.1 Overview
	2.1.1 Introduction
	2.1.2 Platform Independent Perspective
	2.1.3 Platform Specific Perspective
	2.1.4 Model Packaging Perspective

	2.2 Modeling Namespaces
	2.2.1 Namespaces
	2.2.1.1 Background
	2.2.1.2 Representation
	Common
	PIM
	PSM

	2.2.1.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.2.1.4 Example
	PIM and PSM Representation
	XML Schema Representation

	2.2.2 NIEM Names
	2.2.2.1 Background
	2.2.2.2 Representation
	Common
	PIM
	PSM

	2.2.2.3 Mapping Summary
	PIM to PSM Mapping

	2.2.2.4 Example

	2.3 Modeling Complex Types
	2.3.1 Complex Types
	2.3.1.1 Background
	2.3.1.2 Representation
	Common
	PIM
	PSM

	2.3.1.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.3.2 Object Types
	2.3.2.1 Background
	2.3.2.2 Representation
	Common
	PIM
	PSM

	2.3.2.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.3.2.4 Examples
	PIM Representation
	PSM Representation
	XML Schema Representation

	2.3.3 Role Types
	2.3.3.1 Background
	2.3.3.2 Representation
	Common
	PIM
	PSM

	2.3.3.3 Mapping Summary
	PIM Representation Mapping
	PIM to PSM Mapping

	2.3.3.4 Examples
	PIM Representation
	PSM Representation
	XML Schema Representation

	2.3.4 Association Types
	2.3.4.1 Background
	2.3.4.2 Representation
	Common
	PIM
	PSM

	2.3.4.3 Mapping Summary
	PIM Representation Mapping
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.3.4.4 Example
	PIM Representation
	PSM Representation
	XML Schema Representation

	2.3.5 Metadata Types
	2.3.5.1 Background
	2.3.5.2 Representation
	Common
	PIM
	PSM

	2.3.5.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.3.5.4 Examples
	PIM Representation
	XML Schema Representation

	2.3.6 Augmentation Types
	2.3.6.1 Background
	2.3.6.2 Representation
	Common
	PIM
	PSM

	2.3.6.3 Mapping Summary
	PIM Representation Mapping
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.3.6.4 Examples
	PIM Representation
	XML Schema Representation

	2.3.7 Adapter Types
	2.3.7.1 Background
	2.3.7.2 Representation
	Common
	PIM
	PSM

	2.3.7.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.3.7.4 Example
	PSM Representation
	XML Schema Representation

	2.4 Modeling Simple Types
	2.4.1 Simple Types
	2.4.1.1 Background
	2.4.1.2 Representation
	Common
	PIM
	PSM

	2.4.1.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.4.2 Primitive Types
	2.4.2.1 Background
	2.4.2.2 Representation
	Common
	PIM
	PSM

	2.4.2.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.4.2.4 Examples
	PIM Representation
	PSM Representation
	XML Schema Representation

	2.4.3 Code Types
	2.4.3.1 Background
	2.4.3.2 Representation
	Common
	PIM
	PSM

	2.4.3.3 Mapping Summary
	PIM Representation Mapping
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.4.3.4 Example
	PIM Representation
	PSM Representation
	XML Schema Representation

	2.4.4 Unions
	2.4.4.1 Background
	2.4.4.2 Representation
	Common
	PIM
	PSM

	2.4.4.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.4.4.4 Example
	PIM Representation
	PSM Representation
	XML Schema Representation

	2.4.5 Lists
	2.4.5.1 Background
	2.4.5.2 Representation
	Common
	PIM
	PSM

	2.4.5.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.4.5.4 Example
	PIM Representation
	PSM Representation
	XML Schema Representation

	2.5 Modeling Properties
	2.5.1 Properties
	2.5.1.1 Background
	2.5.1.2 Representation
	Common
	PIM
	PSM

	2.5.1.3 Mapping Summary
	PIM Representation Mapping
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.5.1.4 Example
	PIM Representation
	PSM Representation
	XML Schema Representation

	2.5.2 Property Holders and Property References
	2.5.2.1 Background
	2.5.2.2 Representation
	Common
	PIM
	PSM

	2.5.2.3 Mapping Summary
	PIM Representation Mapping
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.5.2.4 Example
	PIM Representation
	XML Schema Representation

	2.5.3 Substitution Groups
	2.5.3.1 Background
	2.5.3.2 Representation
	Common
	PIM
	PSM

	2.5.3.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.5.3.4 Examples
	PIM Representation
	XML Schema Representation

	2.5.4 Choice Groups
	2.5.4.1 Background
	2.5.4.2 Representation
	Common
	PIM
	PSM

	2.5.4.3 Mapping Summary
	PIM to PSM Mapping
	PSM to XML Schema Mapping

	2.5.4.4 Example
	PIM Representation
	XML Schema Representation

	2.6 Packaging Models
	2.6.1 Reference and Subset Models
	2.6.1.1 Background
	2.6.1.2 Representation
	Common
	PIM
	PSM

	2.6.1.3 Mapping Summary
	PIM Representation Mapping

	2.6.1.4 Example

	2.6.2 Model Package Descriptions
	2.6.2.1 Background
	2.6.2.2 Representation
	Common
	PIM
	PSM

	2.6.2.3 Mapping Summary
	PIM Representation Mapping
	MPD Model to MPD Artifact Mapping

	2.6.2.4 Example

	Annex A NIEM-UML PIM Example
	A.1 Example Description
	A.2 Organization of NIEM Information Models and Classes
	A.3 High-level design
	A.4 Documenting Elements
	A.5 UML Associations Defining NIEM Properties
	A.6 UML Enumerations Defining NIEM Code Types
	A.7 Defining a simple property for an adoption center
	A.8 Properties of Pet
	A.9 Properties Using Classes as Their Types
	A.10 Finding Classes in Reference Namespaces
	A.11 Defining a subset namespace with «References»
	A.12 Reusing Person
	A.13 Reusing Person Name
	A.14 Contact Information
	A.15 Augmenting Telephone Number
	A.16 Using a NIEM Association for Contact Information
	A.17 Pet Adoptions as a kind of activity
	A.18 Pet Adoption Centers as a role of an organization
	A.19 Putting together the high-level picture
	A.20 Primitive types
	A.21 The Pet Adoption Exchange
	A.22 Using classes by default
	A.23 The Pet Adoption IEPD Model

	Annex B Terms and Definitions
	2.7 Definitions
	Artifact (NIEM)
	Association (NIEM)
	Augmentation (NIEM)
	Catalog (NIEM)
	Change Log (NIEM)
	Core Update (NIEM)
	NIEM Conformance (also NIEM-conforming)
	Constraint Schema (NIEM)
	Data Component (NIEM)
	Domain Update (NIEM)
	Exchange Schema (NIEM)
	Extension Schema (NIEM)
	NIEM Information Exchange Model (IEM)
	NIEM Information Exchange Package (IEP)
	NIEM Information Exchange Package Documentation (IEPD)
	Master Document (NIEM)
	Metadata
	Model
	Model Driven Architecture (MDA)
	NIEM Model Package Description (MPD)
	NIEM Core
	NIEM Domain
	NIEM-conformant Schema
	Normative
	Normative Reference
	Object Constraint Language (OCL)
	Platform Independent Model (PIM)
	Platform Specific Model (PSM)
	Query/View/Transformation (QVT)
	Reference Schema (NIEM)
	Release (NIEM)
	W3C Resource Description Framework (RDF)
	Root Element (NIEM)
	Schema Subset (NIEM)
	Subset Schema (NIEM)
	Unified Profile for DoDAF and MODAF (UPDM)
	XML Metadata Interchange (XMI)
	XML Schema Document (XSD)
	 eXtended Markup Language (XML)

	2.8 Acronyms

